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Models based on spatial-frequency channels and local features provide alternative explanations for 
suprathreshoid pattern discrimination. We compared psychophysical discriminationdata with the 
predictions of the Wilson and Gelb channel model and three local-feature models. The features were 
peak-valley local contrast, peak-peak local contrast, and luminance gradients. We measured visual 
sensitivity for discriminating compound gratings (F Jr 3F or F + 5F, in peaks-add or peaks-subtract 
phases) whose component contrasts were yoked together so that a contrast increment in one component 
was accompanied by an equal decrement in the other. The Wilson and Gelb model accounted for the 
results with peaks-add gratings, but failed to predict those with peaks-subtract gratings. None of the 
local-feature models explained the results by themselves. Most of the data fell close to an envelope 
composed of the lowest thresholds of the three feature-detector models, although there were important 
exceptions. Our findings are consistent with the view that suprathreshold pattern discrimination is 
mediated by mechanisms responsive to spatially localized features and that more than one type of 
feature is used. 

Pattern discrimination Contrast discrimination Spatial frequency channels Local features 

INTRODUCTION 

Descriptions of spatial patterns can be given in either the 
space domain or the spatial-frequency domain. Corre- 
sponding theoretical approaches to pattern discrimi- 
nation focus on either spatially localized features 
of  luminance waveforms or the outputs of  spatial- 
frequency filters. We compared psychophysical dis- 
crimination of suprathreshold compound gratings with 
predictions of  local-feature models and the Wilson and 
Gelb channel model. 

The appearance of  the sum of  two sine-wave gratings 
(a compound grating) changes when the contrasts of the 
components change (see the luminance profiles in Fig. 1). 
Observers decribe these differences in several ways, such 
as changes in the fuzziness or width of  the bars, or the 
brightness or darkness of' the bars. An observer may use 
changes in one or more of  these local features to decide 
whether two compound gratings are the same or differ- 
ent. Several local features have been proposed as useful 
in discrimination (usually without specification of the 
underlying sensory mechanisms). These include the local 
contrast between adjacent luminance peaks and valleys 
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:~We also considered width, defined as distance between two inflection 
points. Discrimination predictions based on this feature were very 
poor and will not be considered further. 

(Badcock, 1984a, b), luminance gradients (Campbell, 
Johnstone & Ross, 1981; Hess & Pointer, 1987), the 
separation between luminance peaks (Burbeck, 1987), 
the width of  a bright or dark bar (Bennett & Banks, 
1991), the location of a luminance centroid or the 
average lightness in a given area (Bennett & Banks, 
1991). Two local-feature models provide more details of 
the underlying mechanisms (Watt & Morgan, 1985; 
Morrone & Burr, 1988); local features, such as bar or 
edge location, are computed from the outputs of  a set of  
spatial-frequency filters. 

In the absence of a principled way of  identifying a 
complete set of local features, we selected three features 
that have proven successful in previous work on 
suprathreshold pattern discrimination--peak-peak local 
contrast, peak-valley local contrast, and gradient.~ These 
features convey to the observer percepts of the relative 
brightness (or darkness) of  an area, the "contrast" of 
local regions, and the fuzziness or sharpness of  contours. 

It is logically possible, of course, that some alternative 
feature, not yet identified in the research literature, might 
provide a better account of the data than any of the 
features we studied. 

Two of  the features are based on relations between 
local peaks and valleys in the luminance waveform and 
are termed "local-contrast" features. In Fig. 1, the 
luminances of  adjacent peaks and valleys (such as a and 
b, or b and c) can be used to define peak-valley 
local-contrast features. A given waveform may have 
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F I G U R E  1. Luminance profile of  compound gratings consisting of F 
and 3F. Five contrast  combinations are shown for peaks-add and 
peaks-subtract phases. The sum of  the component  contrasts is held 
fixed at 0.5. Note small shoulders around the mean luminance level in 

F = 30. 

several distinctly different local contrasts. The Michelson 
(or some other) definition of contrast can be used to 
compute the local contrast from the luminances of the 
adjacent peaks and valleys. Similarly, the luminances of 
adjacent peaks (or adjacent valleys), such as a and c, or 
b a n d d  f o r F = 3 0 %  and 3 F = 2 0 o  in Fig. 1, canbe 
used to define peak-peak local-contrast features. Local- 
contrast features were proposed by Badcock (1984a, b) 
to account for pattern discrimination.* 

Our third local feature is the luminance gradient, 
previously proposed by Campbell et al. (1981), and Hess 
and Pointer (1987). Luminance gradient features of a 
waveform are defined to be the maxima (unsigned) of the 
first derivative (occurring at points of inflection). This is 
closely related to the concept of zero crossing, proposed 
on computational grounds, by Marr and Hildreth 
(1980). 

For the most part, theories of pattern discrimination 
based on spatial-frequency filters are more detailed than 
feature detection theories (Wilson & Gelb, 1984; Klein 
& Levi, 1985; Watson, 1983). These models are based on 
the spatial-frequency channel concepts introduced ear- 
lier (Campbell & Robson, 1968; Graham & Nachmias, 
1971). Filter models have been successful in accounting 
for many types of threshold pattern detection, and for 
some types of suprathreshold pattern discrimination 
including spatial-frequency discrimination (Wilson & 
Gelb, 1984), vernier acuity (Wilson, 1986), bisection 
acuity (Klein & Levi, 1985), curvature discrimination 
(Wilson & Richards, 1989), and contrast discrimination 
(Bowne, 1990). The Wilson and Gelb model has the most 
detailed development and has been applied most widely 

*Badcock used two definitions for local contrast. One is equivalent to 
our peak-valley definition, and the other uses three adjacent peaks 
and valleys as ( a -  c)/(a + b + c), similar to our peak-peak local 
contrast. 

to suprathreshold pattern discrimination. The quantitat- 
ive properties of its underlying mechanisms are physio- 
logically plausible (Wilson, Levi, Maffei, Rovamo & 
DeValois, 1990). 

The Wilson and Gelb model contains six spatial- 
frequency channels, each of which is composed of the 
difference of two or three Gaussian-shaped spatial 
weighting functions. These channels encode a pattern at 
each point of the visual field (Wilson & Gelb, 1984; 
Wilson, MacFarlane & Phillips, 1983; Wilson, 1986). 
The model specifies the non-linear contrast response 
of the channels and imposes rules for computing 
discriminability between two stimuli. 

METHODS 

Apparatus and stimuli 

Vertical sine-wave gratings (single or compound) were 
presented on a Joyce Electronics CRT display by Z-axis 
modulation. The display had a raster frequency of 
100 kHz, a non-interlaced frame rate of 100 Hz, a P31 
phosphor, an unmodulated luminance of 170 cd/m 2, and 
a dark surround. Luminance levels were kept within the 
CRT's linear range. 

Separate sinusoidal waveforms were computed digi- 
tally for the two components of the compound gratings 
on an LSI-11/23 computer. The digital sine waves were 
converted to voltages by two 12-bit D/A converters, 
passed through programmable dB attenuators, electron- 
ically added, and then fed to the Z-axis input. 

The stimuli were compound sine-wave gratings con- 
sisting of the sum of a fundamental (F) and the third 
harmonic (3F) or fifth harmonic (5F). The phase re- 
lationship was peaks-add or peaks-subtract. The com- 
ponent contrasts were yoked together so that a contrast 
increment in one component was accompanied by an 
equal decrement in the other. As a result, the sum of the 
component contrasts remained constant at 0.5. In the 
peaks-add phase, the yoking ensured that the overall 
Michelson contrast of the stimuli remained constant and 
did not provide a cue for discrimination. Figure 1 shows 
a series of these patterns. In this paper, we use the 
Michelson definition of contrast of the sine wave 
components: C = (Lma x - t m i n ) / ( L m a  x -q- Lmin). 

Procedure 

Designating the sine-wave components A and B, and 
their contrasts C A and CB, the subject's task was to 
discriminate between compound gratings with contrast 
pairs of (CA, Ca) and (CA -- AC, C~ + AC). The exper- 
iment consisted of measuring just-noticeable differences 
in the yoked contrast. For example, if a stimulus 
(CA = 0.4, C B = 0.1) was just noticeably different from 
another stimulus with (CA = 0.38, CB= 0.12), the dis- 
crimination threshold was 0.02. Measurements of 
this kind provided a good test bed for examining the 
models because, as will become apparent, they yielded 
substantially different predictions. 

In the first experiment, the compound gratings were 
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F + 3F. The selection of  components was constrained by 
the frequency ratio of  1:3 and a requirement of  about 
equal contrast sensitivities. These constraints were sat- 
isfied by choosing frequencies straddling the peak of  the 
contrast sensitivity function, 2.1 and 6.3 c/deg for two 
observers, and 1.7 and 5.1 c/deg for a third. Separate 
yoked-contrast thresholds were measured for 10 contrast 
pairs of F and 3F in steps of  0.05 as follows (0.50, 0.00), 
(0.45, 0.05) . . . . .  (0.05, 0.45). Separate measurements 
were made for peaks-add and peaks-subtract phases. 

In the second experiment, we used compound gratings 
with a 1:5 frequency ratio to study performance with a 
wider frequency separation. In the third experiment, the 
compound gratings also had a 1:5 frequency ratio, 
but with low frequencies of  0.13 and 0.65c/deg. The 
third experiment addressed the claim that detection and 
discrimination at low spatial frequencies are mediated by 
a gradient feature (Campbell et al., 1981). 

The display was split in two by a 1-cm-wide vertical 
black bar on the screen. The left and right halves 
subtended 3.3 ( H ) x  4.0 (V) deg at a viewing distance 
of  230cm. Pattern discrimination thresholds were 
measured by a temporal two-alternative forced-choice 
(2AFC) staircase procedure. In each observation inter- 
val, a pattern was presented on each half screen. In one 
interval, the two patterns were identical compound 
gratings with component contrasts (CA, CB), termed 
reference patterns. In the other interval, a reference 
compound grating (CA, CB) appeared on one half screen, 
and a target compound grating on the other. The target 
was identical to the reference except its component 
contrasts were (CA -- AC, CB + AC ). The high frequency 
component was always incremented, and the lower 
frequency component decremented. The observer 
identified the interval in which the two patterns were 
different, and received fi~edback. The target appeared 
with equal probability in the first or second interval and 
on the left or right half screen. The stimuli were pre- 
sented for 750 msec with abrupt onsets and offsets. The 
stimulus intervals were separated by 300msec. The 
phases of  the waveforms were fixed relative to the edges 
of  the screen. 

A three-down one-up adaptive staircase was used to 
find threshold values (79%-correct criterion) of  AC 
(Levitt, 1971). The step size was 1 dB. The staircase 
stopped after nine reversals. The values of  AC at the last 
four reversals were averaged to estimate a pattern dis- 
crimination threshold. Data points in the figures are the 
geometric means of  four thresholds. The error bars show 
95% confidence intervals. The confidence intervals were 
calculated from a pooled SE, since the variances among 
the data points were uniform. (For observer JR, we 
computed SEs for each data point because the variances 
weren't uniform.) 

In a single session of  the yoked-contrast experiment, 
thresholds were measured for each combination of com- 
ponent contrasts in random order. For  a given exper- 
iment, each observer participated in eight sessions: four 
repetitions of  the threshold measurements for each of  
two phase relations. 

Prior to the yoked-contrast experiment, contrast sensi- 
tivity functions (CSFs) were measured for each observer 
(1-12 c/deg) using the Quest procedure (Watson & Pelli, 
1983). The CSFs were used to select pairs of  frequencies 
with equal sensitivities for the yoked-contrast exper- 
iment. Once this selection was made, contrast discrimi- 
nation functions were measured for each of  the two 
sine-wave gratings. The pedestal contrasts were 0, 0.01, 
0.02, 0.04, 0.08, 0.16, 0.32, and 0.50. (In the F + 5 F  
experiment, the maximum pedestal contrast was either 
0.25 or 0.32.) The procedures and apparatus were iden- 
tical to those described above for the yoked-contrast 
experiment. 

Observers 

There were six observers. Three participated in 
the F + 3F and F + 5F experiments, and one in the 
low-frequency F + 5F experiment. HA is an author. The 
others were naive to the purposes of  the experiments. All 
were emmetropic or had corrected-to-normal visual 
acuities. All observers had more than 10 hr of  practice 
before final data collection. Viewing was binocular with 
natural pupils in a dark room. 

Model predictions 

The predictions rely on data from contrast discrimi- 
nation functions (CDFs) for sine-wave gratings. Because 
CDFs are very similar for stimuli with equal detection 
thresholds, we chose a pair of sine waves with the 
appropriate frequency ratio and about equal contrast 
sensitivities. This selection was based on CSF measure- 
ments. The pair of  frequencies spanned the peak of the 
CSF. We then measured CDFs, AC vs C, for these sine 
waves. The same sine-wave gratings were used in the 
compound-grating experiments, and the CDFs were 
used to predict thresholds from the four models as 
follows: 

Peak-valley local-contrast model. A pattern has a 
sequence of luminance peaks and valleys, La, Lb, L~, etc. 
We can compute the local contrast for all adjacent pairs 
(i.e. for a and b, b and c, c and d, etc, see Fig. 1). For  
sine-wave targets all the local contrasts are identical. The 
CDFs for sine waves can be used to identify the incre- 
ment threshold AC associated with any particular local 
contrast C. In the case of  compound gratings, we 
computed all peak-valley local contrasts across the 
stimulus (Michelson contrast). The smallest value of  
yoked-contrast change AC yielding a threshold change 
for any local contrast value was taken as the model's 
discrimination threshold. (We based the prediction on 
the CDFs of the higher-frequency component, but since 
the CDFs were very similar for the two components, the 
choice is not critical.) In some cases, a yoked-contrast 
change resulted in the creation of  a local-contrast feature 
not present in the stimulus prior to the change (e.g. 
emergence of  the shoulder, and the notch evident in 
Fig. 1). The emergent feature was considered to have 
zero peak-valley contrast prior to the increment, and the 
threshold prediction was based on the contrast detection 
thresholds for the component sine waves. 
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Peak-peak local-contrast model. For sine waves, all 
peaks have the same luminance, but for a compound 
grating an adjacent pair can have different luminances 
(see Fig. 1). The difference can be used as a cue for 
pattern discrimination. Subjectively, this amounts to 
basing the discrimination on the relative brightness of 
adjacent bars. We computed peak-peak local-contrast 
values (Michelson definition) from the luminances of 
adjacent peaks in the waveform. For purposes of deriv- 
ing predictions from sine-wave CDFs, we assumed that 
the discrimination properties of the peak-peak local- 
contrast mechanism were the same as the peak-valley 
mechanism. 

Gradient model. Two just-discriminable gratings have 
contrasts of C and C + AC, but they also have maximum 
luminance gradients of G and G + AG. On the assump- 
tion that gradient features determine performance, the 
CDF provides the relationship between AG and G. For 
the compound gratings, we calculated all local gradient 
maxima across the waveform, and the change in yoked 
contrast required to produce a threshold change in these 
gradients. When the compound gratings were dominated 
by the fundamental component, F (i.e. had the same 
number of peaks and valleys), gradient predictions were 
based on the AG values from the corresponding sine- 
wave CDF. When the compound grating was dominated 
by the 3F (or 5F) component (i.e. same number of peaks 
and valleys), AG values were obtained from the CDFs 
for these higher frequencies. 

Wilson and Gelb (1984) model. We implemented this 
model in a computer simulation written in C on a 
Macintosh computer. We chose parameters of the model 
with the goal of optimizing its fit to our data. 

For each observer, we customized sensitivity par- 
ameters of the six mechanisms [A in equation (2) of 
Wilson and Gelb (1984, p. 125)], and a parameter of the 
non-linear transducer function [e in equation (6) of 
Wilson and Gelb (1984, p. 125)]. The rest of the par- 
ameters were taken from Wilson and Gelb (1984). The 
sensitivity parameters were selected as follows: a 
parabola was fit to the CSF data of each observer. From 
this curve, we obtained contrast sensitivities at the peak 
frequencies of the six mechanisms. We adjusted sensi- 
tivity parameter A for each mechanism so that the model 
would yield an accurate prediction for the observer's 
contrast sensitivity at the mechanism's peak frequency. 
We used the spatial summation rule described by Bergen, 
Wilson and Cowan (1979, their Fig. 9). For pooling 
across mechanisms, the exponent Q was set at 6, based 
on Wilson and Gelb (1984).* 

The values of e given by Wilson and Gelb produced 
lower slopes for CDFs than we obtained. Accordingly, 
we adjusted e to give a best fit (least-squares criterion) 
to our sine-wave CDFs in the range 0-50% contrast. We 
obtained values of e between 0.5 and 0.7 for all mechan- 
isms, similar to values used by Yager and Kramer 

*In fitting the compound-dating data, we tried varying Q from 1 to 
100. Although fits with higher values of  Q were sometimes slightly 
better, the difference from the fit with 6 was negligible. 

(1991). Figure 2 shows illustrative fits of the model to 
contrast-discrimination data, and indicates that the 
model was well calibrated for these observers. 

Parameters derived from the CSF and CDF data were 
fixed and used to predict the results of the compound- 
grating experiments. 

RESULTS 

F + 3F condition 

Figure 3 shows data and predictions for three observ- 
ers. The spatial frequencies of the components F and 3F 
were 2.1 and 6.3 c/deg for HA and KS, and 1.7 and 
5.1 c/deg for RA. Discrimination threshold AC is plotted 
as a function of the contrast of the 3F components. 
(Recall that the sum of the contrasts of F and 3F is fixed 
at 0.50.) There are separate panels for peaks-add and 
peaks-subtract data. There was a significant effect of the 
contrast condition for all observers (P < 0.01). 

The results are clearest for HA's data, shown in the 
top two panels of Fig. 3. The Wilson and Gelb model 
provided a fairly good fit to his peaks-add data, but not 
to the peaks-subtract data. This model predicted much 
lower thresholds in the peak-subtract case where it 
undershot the data across most of the range. The 
model's peaks-subtract curve had two deep dips (i.e. very 
low thresholds) for which there was no evidence in the 
data. 

None of the local-feature models accounted for the 
full range of HA's peaks-add data. The gradient model 
fit the data for 3F contrasts from 0 to 10%, the gradient 
and peak-valley models fit the data from 20% to 35%, 
and the peak-peak model fit the data from 35% to 45%. 
Near 15%, the data varied smoothly, but all three 
local-contrast models had major excursions. 

Except near 15% contrast, it is roughly the case that 
HA's peaks-add data follow the lower envelope of the 
local-feature curves. This raises the possibility of a 
multiple local-feature model in which the observer has 
simultaneous access to all three local features. 

Similarly, for HA's peaks-subtract data, none of the 
local-feature models worked across the entire range. 
Predictions of the gradient and peak-valley models were 
similar and accounted for the data for 3F contrasts from 
0 to 25%. The peak-peak model fit the data from 35% 
to 45%. Although the data roughly follow the lower 
envelope of the feature models, the points lie below all 
the models near 30%. 

The results were qualitatively similar for observer RA 
(Fig. 3). The Wilson and Gelb model fit the peaks-add 
data quite well but not the peaks-subtract data. None of 
the local-feature models handled all the data. For peaks- 
add, the gradient model again worked at low contrasts 
of 3F, and the peak-peak model worked for high con- 
trasts (over a wider range than for HA). For peaks- 
subtract, all of RA's data were quite close to the 
peak-peak prediction. Perhaps RA relied primarily on a 
single local feature, the peak-peak local contrast, revert- 
ing to the gradient when the peak-peak cue was not 
present. 
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FIGURE 2. Contrast discrimination functions (O) and the predictions from the Wilson and Gelb model are shown for three 
observers (HA, JR and TT). Plots are given for simple sine-wave gratings at two spatial frequencies. The error bars indicate 

95% confidence intervals. 

Observer KS's data differ from the others in two ways. 
The peak-peak model does not provide a good fit to the 
peaks-add data for contrasts of 30-40%. For  peaks- 
subtract contrasts of  30-40%,  thresholds are lower than 
predicted by any of  the local-feature models. 

F + 517 condition 

Figure 4 shows data and predictions for three observ- 
ers. The spatial frequencies of the components F and 5F 
were 1.7 and 8.5 c/deg for HA, 1.6 and 8.0 c/deg for JR, 
and 2.2 and 11.0 c/deg for TT. Discrimination threshold 
AC is plotted as a function of  the contrast of  5F. There 
was a significant effect of  the contrast conditions for all 
observers (P < 0.01). 

The results are similar to those for F + 3F. The Wilson 
and Gelb model provided better fits to the peaks-add 
data than the peaks-subtract data, although the differ- 

ence was not so striking. None of the local-feature 
models accounted for the full range of  data. But, as in 
F + 3F compounds, data for low contrasts of  5F were 
roughly consistent with the gradient model and data for 
high contrasts with the peak-peak model. There were 
individual variations in the contrast ranges over which 
these two local-feature models worked. 

F + 5F condition--low spatial frequencies 

One observer (LW) was tested with low component 
frequencies of  0.13 and 0.65 c/deg. His data are shown 
in Fig. 5 along with the predictions of  the models. The 
data points are the means of  two threshold measures 
rather than four. The results are qualitatively similar to 
those in the other conditions: the Wilson and Gelb 
model fit the peaks-add data better than the peaks- 
subtract data; none of  the local-feature models could 
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account for all of the data, but the gradient and 
peak-peak models together covered most of the data. 
The data don't support the view that the gradient feature 
is more salient at very low frequencies. 

DISCUSSION 

The Wilson and Gelb model 

The Wilson and Gelb model accounted for the results 

with peaks-add gratings, but failed to predict those with 
peaks-subtract gratings. Why this difference? 

Recall that the Wilson and Gelb model assumes three 
spatially adjacent sensors for each channel with the 
middle one aligned with the center of the pattern. For 
peaks-add patterns, the two components of the com- 
pound grating superimpose additively for all sensors, 
producing a strong response in all of them. The sensor 
responses are high, yielding fairly high thresholds, 
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FIGURE 4. Discrimination thresholds for compound gratings of F and 5F. The data and predictions from the models are 
shown for three observers (HA, JR and TT). Error bars indicate averaged 95% confidence intervals of all yoked conditions 

(for JR the values are not average). 

consistent with the data. On the other hand, in the 
peaks-subtract condition,;, the two components (F and 
3F) elicit responses in opposite directions (positive and 
negative responses) for sensors which are sensitive to 
both components. There are certain contrast combi- 
nations at which the net responses of  the sensors are low. 
Low responses of  the model sensors occur in the acceler- 
ating portion of  the nonlinear transducer function where 
small contrast differences yield large response differ- 
ences. These sensors account for the model's low con- 
trast-discrimination thresholds for some contrast 

combinations in the peaks-subtract condition, viz. the 
( IF  = 25% + 3F = 25%) and ( IF  = 10% + 3F = 40%) 
conditions. The data do not exhibit these very low 
thresholds. 

Even for peaks-add phase, there are portions of the 
waveform of a 1F + 3F compound grating in which the 
components have opposite signs. For sensors centered at 
these points and responsive to both components, the 
opposing inputs would yield low responses, and low 
contrast-discrimination thresholds in the model. This 
reasoning led us to predict that if the sensor arrays in the 
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FIGURE 5. Discrimination thresholds for compound gratings of F and 5F with low spatial frequencies (0.13 and 0.65 c/deg) 
for observer LW. The data and predictions from the models are shown. Error bars indicate averaged 95% confidence intervals 

of all yoked conditions. 

50 

Wilson and Gelb model were extended to cover a full 
cycle of  the 1F component (instead of three sensors 
clustered near the peak), the undesirable low thresholds 
might also appear in the peaks-add condition. We 
simulated this extension of the model. We increased the 
number of sensors from three to five, and also 11, using 
the same sensor spacing parameters used in the Wilson 
and Gelb model. Five sensors are sufficient to cover a 
half cycle at the peak frequency of  the sensor, with one 
sensor at the center and two on either side. Eleven 
sensors cover a full cycle. 

For both the five- and l l-sensor cases, predicted 
discrimination thresholds were low for both peaks-add 
and peaks-subtract conditions (between 0.5% and 2.0% 
contrast) and the pattern of threshold change was not 
consistent with our observed data. 

Another way of amending the Wilson and Gelb model 
is to include sensors in sine phase: adding sensors with 
sine-phase receptive fields (90 deg out of  phase with the 
cosine-phase receptive fields of the standard model). 
These additional sensors don' t  solve the problem of  low 
thresholds in the peaks-subtract case. This is because all 
mechanisms are assumed to be independent and the 
contrast-discrimination threshold is still determined by 
the cosine-phase sensors with opposed inputs from the 
two components. 

It appears that to avoid the unacceptably low 
thresholds predicted by the model, some form of  inhi- 
bition between sensors, possibly including contrast gain 
control, would have to be included. 

Local-feature models 

None of the local-feature models explained the results 
by themselves. However, most of the data fell close to an 
envelope composed of the lowest thresholds of  the three 
feature-detector models, with some exceptions. Our 
results immediately raise two questions about the 
local-feature models. 

First, why does a particular local-feature model fit the 
data for only a limited range of contrast combinations? 
Adopting a minimum threshold principle, when two or 
more feature detectors have different thresholds for a 
given stimulus, the feature producing the lowest 
threshold determines performance. We would expect the 
envelope of lowest thresholds of  the feature detectors 
to determine discrimination performance. This would 
require an observer to switch features in the discrimi- 
nation task, depending on which one was most sensitive 
in a given condition. This envelope model accounts for 
most of the results in Figs 3 and 4. 

Second, why doesn't any local-feature model account 
for some data points, such as 3F = 0.15 in peaks-add 
phase? To address this question, we turn to contrast gain 
control. 

Contrast gain control 

A problem that is common to the channel model and 
the local-feature models is the prediction of  very low 
discrimination thresholds that are not observed empiri- 
cally. This behavior reflects the existence in the models 
of  accelerating portions in the contrast-response func- 
tions when the sensors are weakly responding. The 
models are built like this because contrast-discrimination 
functions for sine-wave gratings (and other patterns) 
show a facilitation effect for near-threshold pedestals 
(Nachmias & Sansbury, 1974; Foley & Legge, 1981). In 
the Wilson and Gelb model, sensors may operate on the 
accelerating portion of  the contrast-response function 
when the two components of  the compound grating 
produce roughly equal and opposite responses in the 
front-end linear filter. In the local-feature models, a 
similar problem occurs when a low-contrast emergent 
feature appears in the compound waveform. One way of 
preventing model sensors from achieving high-sensitivity 
operation under these conditions is to introduce some 
form of mutual inhibition among sensors. Models of 
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F I G U R E  6. Contrast  responses of  a channel are shown for an 
independent channel model (Legge & Foley, 1980) and a mutually 
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is the channel response, C i,; st imulus contrast, and a and k are 
constants  with values taken from Legge and Foley (1980). The 
additional parameters s and j in the Foley's equation are sensitivity 
parameters of  the channels: ,~ = 1, s 2 = 2, s 3 = 2. (We chose three 
channels for illustration purposes only.) Note that the two models have 
the same equation with the exception of  the pooling term in the 

denominator  of  the Foley model. 

contrast-gain control may achieve this goal (Albrecht & 
Geisler, 1991; Foley, 1994; Heeger, 1991; Solomon, 
Sperling & Chubb, 1993; Wilson & Humanski, 1993). In 
the following paragraphs, (1) we show that contrast-gain 
control models can reduce or eliminate the high- 
sensitivity associated with weakly responding sensors; 
and (2) we provide empirical evidence for inhibitory 
effects of the sort required by the models. 

Foley (1994, p. 1711) has suggested that when a linear 
channel's output is modified by divisive inhibition from 
the summed outputs of other channels, an accelerating 
contrast-response function can become negatively 
accelerated. 

Figure 6 shows two contrast-response functions. The 
one from the Legge and Foley (1980) model is similar to 
the Wilson and Gelb model and does not include 
contrast gain control. The other is from Foley (1994) and 
includes divisive inhibition. The parameters of the 
models are described in the figure caption. In the Legge 
and Foley model, like the Wilson and Gelb model, the 
channel's contrast-response function is independent of 
the responses of other channels. In the contrast gain 
control model, such as Foley's (1994) model, a channel's 
response is inhibited by pooled responses from other 
channels. The key point to note in Fig. 6 is that 
conditions can be selected in which parameters yielding 
an accelerating nonlinearity in the absence of divisive 
inhibition convert to a negatively accelerated non- 
linearity in its presence. This could account for the 
desensitization of sensors for patterns in which other 
sensors are highly responsive. 

Contrast gain control may also help the local-feature 
models. The largest discrepancy between predictions and 
observed data occurred at 3F = 15% contrast in peaks- 
add phase (see Fig. 3); the peak-valley and gradient 
models predicted very low thresholds. The luminance 
profile of this pattern is close to the luminance profile 
in Fig. 1 for 1F = 30 -I- 3F = 20, peaks-add. The peak- 
valley local contrast or gradient values in the region b-c 
in the figure determine the model thresholds for this 
contrast combination. For example, small differences in 
the low peak-valley contrast is enough to exceed the 
model's threshold. But notice that this low-contrast local 
feature is flanked by a large luminance peak (a) and a 
large valley (d). Strong signals from adjacent high- 
contrast local features may desensitize the peak-valley 
detector responding to b~.  

In a brief control experiment, we looked for evidence 
of lateral masking of this sort in human performance. 
We measured contrast discrimination thresholds with 
and without flanking bars for a stimulus with similar 
luminance profile. The target for discrimination was one 
cycle of a vertical sine wave. The flanking bars consisted 
of half cycles of a cosine (positive on the target's left, 
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F I G U R E  7. Contrast-discrimination thresholds for a one-cycle sine-wave pattern with and without flanking bars. The flanking bars were half  
cycles of  a 50%-contrast  cosine pattern (see the inset). Error bars indicate 95% confidence intervals. 
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negat ive on the right).  See the inset in Fig. 7. The spat ia l  
frequencies were 2 c/deg for  the f lanking cosine, and  
4 c/deg for the centra l  sine. The choice o f  frequencies 
was governed by the a t t empt  to a p p r o x i m a t e  the 
local  region o f  waveform a, b, c, d (Fig. 1) in 
the 1F = 30 + 3 F  = 20% condi t ion .  The con t ras t  o f  the 
f lanking cosine bars  was fixed at  50%. The  pedes ta l  
con t ras t  of  the sine wave was var ied  f rom 1.0% to 14%. 

F igure  7 shows the results  for  two observers.  The  
results clearly exhibi t  the threshold  e levat ion due to the 
f lanking gra t ing  in the case o f  low pedes ta l  con t ras t s  
(which co r re spond  to our  1 F = 3 5 + 3 F =  15%, and  
1F = 30 + 3F  = 20% compounds ) .  The results o f  this 
br ie f  exper iment  i l lustrate tha t  if  local  features  are 
responsible  for  pa t t e rn  d iscr iminat ion ,  the co r re spond-  
ing neural  represen ta t ions  are vulnerable  to la teral  
mask ing  effects f rom spat ia l ly  ad jacent  pa t t e rn  features.  
The  local - fea ture  models  mus t  invoke  some form of  
la teral  in teract ion,  poss ibly  con t ras t  gain control .  

CONCLUSION 

In all three o f  our  exper iments ,  the Wi l son  and  Ge lb  
channel  mode l  accounted  fair ly well for the peaks - add  
da t a  bu t  no t  for  the peaks - sub t rac t  data .  N o n e  o f  the 
three local  feature  models  by i tself  fit the data .  A simple 
s u m m a r y  is tha t  the g rad ien t  mode l  (or  p e a k - v a l l e y  
model )  fit the c o m p o u n d - g r a t i n g  d a t a  for  a range o f  low 
cont ras t s  o f  3 F  or  5 F  (and high con t ras t s  o f  F ) .  The 
p e a k - p e a k  mode l  fit the da t a  for  high cont ras t s  o f  3 F  or  
5F  (and low values o f  F ) .  The results  were less consis tent  
for c o m p o u n d  grat ings  having componen t s  o f  near ly  
equal  contras t .  The  results are qual i ta t ive ly  consis tent  
with a mul t ip le-cue  mode l  in which observers  can switch 
f rom rel iance on one feature  to another .  This  in terpre t -  
a t ion  is consis tent  with the f indings o f  Hess and  Po in te r  
(1987). 

Al l  o f  the models  showed a character is t ic  failure; they 
pred ic ted  very low thresholds  for  some c o m p o u n d  
grat ings  tha t  were no t  present  in the data .  These were 
cases in which the models  used weakly  respond ing  
mechanisms,  opera t ing  in a sensitive po r t i on  o f  their  
response-vs-cont ras t  curves. H u m a n s  do  not  appea r  to 
have access to these sensitive mechanisms  in 
supra th resho ld  pa t t e rn  d iscr iminat ion .  One poss ib i l i ty  is 
tha t  these mechan i sms  are  desensi t ized by an inh ib i tory  
signal f rom ne ighbor ing  mechanisms  with s t rong 
responses  to high con t ras t  pa t t e rn  features.  
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