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Architects and lighting designers have difficulty designing spaces that are accessible to those with low vision, since
the complex nature of most architectural spaces requires a site-specific analysis of the visibility of mobility hazards
and key landmarks needed for navigation. We describe a method that can be utilized in the architectural
design process for simulating the effects of reduced acuity and contrast on visibility. The key contribution is
the development of a way to parameterize the simulation using standard clinical measures of acuity and contrast
sensitivity. While these measures are known to be imperfect predictors of visual function, they provide a way of
characterizing general levels of visual performance that is familiar to both those working in low vision and our
target end-users in the architectural and lighting-design communities. We validate the simulation using a
letter-recognition task. © 2017 Optical Society of America
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1. INTRODUCTION

Visual accessibility is a property of environmental spaces that
allows the use of vision to travel efficiently and safely through
such spaces, to perceive the spatial layout of key features in the
environment, and to keep track of one’s location in the layout.
It plays a central role in independent mobility, which in turn is
an important prerequisite for full participation in modern
society. Reduced mobility and associated social isolation and
economic disadvantage are among the most debilitating conse-
quences of vision loss. In 2010 in the United States, approx-
imately four million people had uncorrectable low vision, with
projections up to seven million by 2030 and 13 million in 2050
[1]. Only a small percentage of those with low vision have total
blindness, and most of those with low vision use residual visual
capabilities for navigation and other functions [2]. This paper
describes an approach to helping architects and lighting design-
ers increase the utility of this residual visual capability for those
with significant loss of acuity or contrast sensitivity. The ap-
proach simulates the low-vision visibility of features during
the design process, allowing the identification of potential
mobility hazards and landmarks that might go unrecognized
by low-vision individuals. Identifying such hazards during

the design phase of a project make amelioration much easier
than waiting until after actual construction.

Architects and lighting designers think in terms of manipu-
lating the geometry, materials, and lighting of a space in order
to achieve particular functional and aesthetic objectives. For
those with visual impairment involving loss of acuity or con-
trast sensitivity, however, stimulus properties such as visual an-
gle and contrast are critically important. Further complicating
design for visual accessibility is the complex interaction among
geometry, materials, and lighting arrangement that determines
the light field surrounding the viewer. For normally sighted
individuals, general guidelines relating to light levels, glare,
and contrast are often sufficient to minimize visually indistinct
hazards. For those with low vision, however, general guidelines
are not sufficient. Because of the importance of angular feature
size and limits on contrast sensitivity in low vision, the exact
positioning and nature of light sources, surfaces, and the viewer
can have a profound effect on visibility.

The value of lighting and the visual environment for the
aging eye has seen a rise in importance in the architectural
professions during the past decade, prompting focused
symposiums, new guidelines, and recommended practices

Research Article Vol. 34, No. 4 / April 2017 / Journal of the Optical Society of America A 583

1084-7529/17/040583-11 Journal © 2017 Optical Society of America

Corrected 13 April 2017

mailto:thompson@cs.utah.edu
mailto:thompson@cs.utah.edu
mailto:thompson@cs.utah.edu
https://doi.org/10.1364/JOSAA.34.000583


(e.g., [3–5]). A remaining challenge is to evaluate the visibility
outcomes when making design choices based on these recom-
mendations. While many of the tools used to model architec-
tural projects during the design phase can produce images of
the project, a few can now also produce physically and photo-
metrically accurate simulations of the space being designed.
Developing new systems for simulating the effects of reduced
acuity and contrast to build on these photometrically accurate
renderings would provide a designer with an opportunity to
evaluate design choices in the context of low vision and visibil-
ity. Working within the project’s design palette, a designer
could modify textures, colors, shapes, and lighting to optimize
visibility, while retaining the character of the design. To evalu-
ate the implementation of the final design specifications, acuity
and contrast sensitivity filters can be applied to calibrated high
dynamic range (HDR) photographs of the completed environ-
ment. Additionally, visibility studies using HDR images of
existing environments would be of value when considering ren-
ovation or remodeling strategies. The integration of these tools
into the architect’s workflow will provide the missing link be-
tween general guidelines and the successful visual accessibility
of a project.

Our approach to simulating the visibility impacts of loss of
acuity and contrast sensitivity builds on the work of Peli [6,7],
who described a method for transforming an image to simulate
the visibility associated with a particular contrast sensitivity
function (CSF). An original image is first transformed into a
set of bandpass images, each representing an unnormalized con-
trast measure over a narrow range of spatial scales. Each pixel in
each unnormalized contrast band is then divided by the local
luminance of the original image surrounding the pixel location,
providing a measure of local contrast closely related to
Michelson contrast. Next, each pixel in each unnormalized
contrast band is thresholded based on a criterion that compares
the local contrast values to a CSF evaluated at peak band re-
sponse frequency of the band filter. Finally, the thresholded un-
normalized contrast bands are reassembled to produce an
output image. The method uses variations in the embedded
CSF to represent the reduction in pattern sensitivity of people
with low vision.

This nonlinear method has three advantages over a linear
filtering approach that uses the CSF as if it were a modulation
transfer function (MTF) [7]: (1) Image contrast that is below
the contrast specified by the CSF is removed, rather than just
being attenuated. This reduces variability associated with view-
ing conditions and the viewer’s own acuity and contrast sensi-
tivity (called the double filtering effect [8]). (2) Image contrast
that is above the CSF-specified threshold is left intact, thus bet-
ter modeling the suprathreshold response of the visual system
[9,10]. (3) CSF-based thresholding is done in a spatially local-
ized manner that takes into account local luminance, which has
a strong effect on contrast perception. Taken together, these
properties serve to remove image features predicted to be
not visible, while leaving features predicted to be visible clearly
apparent in the output.

Our most important contribution extending the work
of Peli [6,7] is to provide a way of parameterizing the method
using standard clinical measures of acuity and contrast

sensitivity and to validate the parameterization using a letter-
recognition task. While clinical measures of acuity and contrast
sensitivity are known to be imperfect predictors of visual func-
tion for specific individuals, they provide a way of characteriz-
ing general levels of visual performance that is familiar to both
those working in low vision and our target end-users in the
architectural and lighting design communities. We also propose
a way of reducing one type of artifact associated with the hard
thresholding used in [7], we make suggestions for including
color, which may aid acceptance by architects and lighting
designers, and we provide an implementation that takes as in-
put HDR images that are linearly encoded in luminance.
Multichannel models such as [6] have advantages when dealing
with broadband signals [11]. They also facilitate implementing
adaptation to local intensity (see [12], which uses a spatial
image pyramid approach).

2. PARAMETERIZING THE SIMULATION OF
REDUCED ACUITY AND CONTRAST
SENSITIVITY

The nature of the visibility filtering achieved by the method
described in [6,7] is controlled by the CSF that it uses.
There is substantial debate as to the appropriate functional
form for CSFs modeling human vision (e.g., [11,13,14]).
We chose to use the CSF described in Chung and Legge
[15], since it is the only one that has been shown to fit empirical
CSF data from a substantial group of low-vision subjects. While
the Chung and Legge CSF was developed based on band-
limited stimuli (sine wave gratings), when correctly calibrated
(see Section 3), it proved sufficient to model recognition of
local broadband stimuli such as letters.

Chung and Legge [15] propose a CSF of the following form:

Sl �f l � �
�

SPl − �f l − FPl �2w2
L if f < FP

SPl − �f l − FPl �2w2
H if f ≥ FP

; (1)

where

S contrast sensitivity,
Sl log10�S�,
f spatial frequency,
f l log10�f �,
SP peak contrast sensitivity,
SPl log10�SP�,
FP frequency of peak contrast sensitivity,
FPl log10�FP�,
wL constant for low frequency portion of CSF,
wH constant for high frequency portion of CSF.

As is common with CSF formulations, sensitivity is defined
in terms of Michelson contrast. Based on a best-fit analysis to
measured normal vision CSF data, Chung and Legge [15] use
the following rate constants: wL � 0.68 and wH � 1.28.

Equation (1) has the shape of an asymmetric parabola when
plotted in f l–Sl space (see Fig. 1). Empirical evidence supports
the claim that Eq. (1) can successfully approximate a wide range
of normal and low vision by adjusting SP and FP [15]. In par-
ticular, low vision involving a reduction of acuity can be mod-
eled by sliding the normal vision CSF function left in f l–Sl
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space, while low vision involving a reduction in contrast
sensitivity can be modeled by sliding the normal vision CSF
function down in f l–Sl space. To emphasize this left-right/
top-down sliding, we reparameterize Eq. (1) by replacing SP
by c × SPN and FP by a × FPN :

Sl �f l � �

8>><
>>:

SPN l � log10 c − �f l − FPN l − log10 a�2w2
L

if f < a × FPN
SPN l � log10 c − �f l − FPN l − log10 a�2w2

H
if f ≥ a × FPN

;

(2)

where

SPN peak normal vision contrast sensitivity,
SPN l log10�SPN �,
FPN frequency of peak normal vision contrast

sensitivity,
FPN l log10�FPN �,

c contrast sensitivity adjustment,
a acuity adjustment.

A. Adjusting for Reduced Contrast Sensitivity

One common clinical measure of peak contrast sensitivity uses
the Pelli–Robson Contrast Sensitivity Chart [16]. The chart
consists of black or gray letter groups with decreasing contrast,
all on a white background. Weber contrast is typically used to
characterize the contrast of these darker optotypes viewed on a
lighter background:

Cw � Lb − Lc
Lb

; (3)

where
Cw Weber contrast,
Lb luminance of background,
Lc luminance of character.

The Pelli–Robson contrast sensitivity score is based on the
threshold contrast for letter recognition, expressed as the log of
the Weber contrast for threshold visibility (the negative of the
log is commonly used to make the scores positive):

PR � −log10 CTw; (4)

where

PR Pelli–Robson score,
CTw Weber contrast for threshold visibility.

One important caveat is relevant to the use of the
Pelli–Robson chart: “While it is supposed that the chart will
normally be used at a distance of 3 m, it can be used at much
nearer distances for assessment of low vision” [16]. For our pur-
poses, we will assume that the Pelli–Robson score reflects a
viewing distance as close as necessary to easily resolve the letters
on the chart, though this is not always done in a clinical setting.

The contrast sensitivity adjustment parameter c in Eq. (2)
represents the ratio of the peak contrast sensitivity being
simulated to the normal vision peak contrast sensitivity:

c � SPL
SPN

; (5)

where

SPL simulated low vision peak contrast sensitivity.

Accounting for the difference between Michelson contrast,
as used in the CSF, and Weber contrast, as used in the
Pelli–Robson score, and assuming that a PR score of 2.0, which
indicates a threshold Weber contrast of 1/100 and a threshold
Michelson contrast of 1/199, corresponds to normal vision

Cm � Lb − Lc
Lb � Lc

� Cw

2 − Cw
; (6)

SPL � 1

CTm
� 2 − exp10�−PR�

exp10�−PR�
; (7)

SPN � 199; (8)

where

Cm Michelson contrast,
CTm Michelson contrast for threshold visibility.

This yields

c � 2 − exp10�−PR�
199 · exp10�−PR�

: (9)

B. Adjusting for Reduced Acuity

The most common clinical measures of visual acuity utilize
Snellen or logMAR letter charts and test for the smallest
high-contrast letters that can be read accurately. Snellen scores
are expressed as a ratio of the distance from which the chart is
viewed to the distance from which the smallest readable
characters subtend an angle of 5 arcmin. In the United
States, this ratio is usually normalized to have a numerator
of 20, corresponding to a distance of 20 ft, while elsewhere
the common numerator is 6, corresponding to a distance of

 1

 10

 100

 0.1  1  10

co
nt

ra
st

 s
en

si
tiv

ity
 (

1/
M

ic
he

ls
on

)

spatial frequency (cycles/degree)

Fig. 1. Chung and Legge [15] CSF is an asymmetric parabola when
plotted in f l–Sl space. The plotted values show two instances of the
CSF, one shifted left (lower acuity) and down (lower contrast sensi-
tivity) compared to the other.
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6 m. A Snellen fraction evaluating to 1 indicates nominally
normal acuity; smaller numeric values of the Snellen fraction
correspond to lower acuity. LogMAR acuity scores are the neg-
ative of the base 10 logarithm of the Snellen fraction. A
logMAR value of 0 indicates nominally normal acuity; larger
logMAR values correspond to lower acuity. We will use the
numeric value of the Snellen fraction in adjusting filtering
for reduced acuity, noting that logMAR values are easily
converted to this value if needed.

Shifting the CSF used for filtering in f l–Sl space to simul-
taneously account for reductions in contrast sensitivity and loss
of acuity is complicated by the fact that standard measures of
contrast sensitivity such as Pelli–Robson scores and standard
measures of acuity such as Snellen scores are associated with
different parts of the CSF. The Pelli–Robson score provides
information about the peak sensitivity of the CSF (lowest
visible contrast), while the Snellen or logMAR score provides
information about the high-frequency cutoff of the CSF (finest
visible high-contrast pattern). This produces an interaction
between acuity and peak contrast sensitivity as they affect
the positioning of the CSF in f l–Sl space. Figure 2 illustrates
the problem. In Fig. 2(a), the CSF has been shifted directly
downward so as to preserve the frequency associated with the
peak contrast sensitivity. The decrease in the high-frequency
cutoff is apparent. In Fig. 2(b), the CSF has been shifted
downward and to the right so as to preserve the high-frequency
cutoff frequency. In this case, the frequency associated with
the peak contrast sensitivity increases. Figure 3 shows the
CSF cutoff frequency as a function of peak contrast sensitivity
for a peak contrast sensitivity frequency corresponding to
normal vision.

The acuity adjustment parameter a in Eq. (2) specifies an
acuity-related shift of the peak of the CSF. As indicated above,
setting this value based on a measure of the high-frequency
cutoff of the CSF is not straightforward. Given particular values
for a and c in Eq. (2), the high-frequency cutoff of the CSF can
be found by solving Eq. (2) for f l, assuming Sl �f l � � 0. This
yields

FCl � FPN l � log10�a� �
�log10�c� � SPN l �12

wH
; (10)

where

FC high-frequency cutoff of CSF,
FCl log10�FC�.
Given a high-frequency cutoff frequency, FC , the

corresponding peak sensitivity frequency, FP, can be found
by solving the equation

SPN l � log10 c − �FPl − FCl �2w2
H � 0 (11)

for FPl. This yields

FPl � FCl −
�log10�c� � SPN l �12

wH
: (12)

When there is no decrease in contrast sensitivity (i.e.,
c � 1), a is equal to the numeric Snellen value, since the ratio
of low-vision peak sensitivity frequency to normal vision peak
sensitivity frequency is the same as for the corresponding cutoff
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Fig. 2. (a) Contrast sensitivity plots for different peak contrast sen-
sitivities, but the same peak contrast sensitivity frequencies; (b) contrast
sensitivity plots for different peak contrast sensitivities, but the same
acuity as measured by cutoff frequency.
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Fig. 3. CSF cutoff frequency as a function of peak contrast
sensitivity for a peak contrast sensitivity frequency corresponding to
normal vision.
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frequencies. When c < 1, the low-vision contrast sensitivity
cutoff frequency value is

FCR � Snellen_value × FCN ; (13)

where

FCR low-vision contrast sensitivity cutoff frequency,
FCN normal vision contrast sensitivity cutoff frequency.

The corresponding low-vision contrast peak sensitivity fre-
quency, FPR, can be found using Eq. (12). Finally, the value of
the parameter a can be computed using

a � FPR
FPN

: (14)

3. CALIBRATING THE SIMULATION OF
REDUCED ACUITY AND CONTRAST
SENSITIVITY

Section 2 described how to adjust the filter for different acuities
and contrast sensitivities by shifting the CSF used for filtering
in f l–Sl space relative to nominal normal vision values for
SPN (peak contrast sensitivity) and FPN (the frequency at
which SPN occurs). Calibrating the filter thus requires choos-
ing appropriate values for SPN and FPN . There is an exten-
sive literature on the quantitative nature of normal vision CSF
as it relates to the detectability of sinusoidal contrast gratings
(e.g., [17]). Much less is known, however, about the relation-
ship between contrast sensitivity and acuity for letter charts, as
used in the measures for specifying the degree of visual
degradation in our filter (see [18–20]).

We used the following approach to setting SPN and FPN .
First, SPN was set to 199, which is the 1/Michelson contrast
sensitivity corresponding to a Pelli–Robson score of 2.0. We
then varied FPN , testing the readability of variously sized
high-contrast letters filtered with various simulated acuity re-
ductions. Trials consisted of presenting subjects with an image
of the 10 Sloan characters in random order on a computer
screen, with all 10 characters visible at once. The characters
were shown in two rows. Subjects were asked to read the char-
acters in order, indicating when a particular character was
clearly illegible. They were asked to identify each of the
displayed letters one at a time, without comparing it to the

other letters being displayed. The images were filtered to sim-
ulate a particular level of low-vision acuity (see Fig. 4).
Individual trials used characters of a single logMAR size, with
the logMAR size varying between trials.

Filtering was done using HDR linearly encoded floating
point luminance values, with the output converted to a low
dynamic range (LDR) 8 bit/pixel format using the sRGB non-
linear luminance encoding. The maximum possible value of the
HDR images was set to 95% of the corresponding maximum
LDR displayable values so as to avoid problems with saturation
that sometimes occur in LCD monitors at the high end of the
display range. Display was done on an Asus PA246Q 24 0 0 LCD
monitor, set to sRGB mode. Screen size and viewing distance
were such that all but the largest character size subtended ap-
proximately the correct angle. (Because of the inability to fit all
10 of the filtered logMAR 1.6 characters on the screen at this
viewing distance, these characters were displayed to subjects at
half size to avoid disruptions in the stimuli presentation due to
large changes in viewing distance that would otherwise be
needed. The filtering was done with the correct visual angle.)
Results were insensitive to moderate changes in viewing
distance.

For each filter setting, results were based on the smallest
characters for which a subject could correctly read seven or
more of the 10 letters. If the filter is correctly adjusting for
the effects of acuity loss, we would expect that the smallest
readable filtered characters would correspond to the acuity
specified for the filtering. Figure 5 shows the results for
FPN � 0.915 cycles∕deg , corresponding to a high-frequency
cutoff of 14.0 cycles/deg. The data are averaged from the results
obtained from six normal vision subjects (average age 24.8
years). All participants gave written informed consent with pro-
cedures approved by the University of Utah’s Institutional
Review Board. As can be seen, the FPN � 0.915 cycles∕deg
setting produced results that were quite close to this prediction.
Subjects were very consistent in their response, with standard
error at each acuity value ranging from 0.0 to 0.022.

The high-frequency normal vision CSF cutoff is commonly
assumed to be about 30 cycles/deg or greater. The best-fit nor-
mal vision cutoff of 14.0 cycles/deg that we found for our task
involving the legibility of filtered characters is substantially

Fig. 4. Screenshots of two stimuli used to evaluate the setting of FPN . (a) shows logMAR 1.3-sized characters, filtered to simulate an acuity of
logMAR 1.2; (b) shows logMAR 1.1-sized characters, filtered to simulate an acuity of logMAR 1.2. Letters in (a) are readily recognizable, while those
in (b) are not. (FPN � 0.915 cycles∕deg for both examples.)
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lower than this. This may be due to low-frequency information
below 2.5 cycles/character being sufficient for character recog-
nition (14.0 cycles/deg corresponds to 1.2 cycles/character for
logMAR 0.0 characters), or perhaps a more general disassoci-
ation between grating-based cutoffs and letter-based cutoffs
(see [18,21,22]).

This first test of filter calibration involved only high-contrast
targets. A second test, involving the same six subjects, simulated
a logMAR 1.1 acuity with two different levels of peak contrast
sensitivity, one corresponding to a Pelli–Robson score of 2.0
(normal vision), and the other corresponding to a Pelli–
Robson score of 1.0 (moderate loss). The readability of letters
with three different contrasts was evaluated: one corresponding
to a Pelli–Robson score of 0.75 (0.178 Weber contrast), one
corresponding to a Pelli–Robson score of 0.50 (0.316 Weber
contrast), and one corresponding to a Pelli–Robson score of
0.00 (1.000 Weber contrast). Table 1 shows the predicted
smallest legible character size along with the average actual
smallest size readable by the six subjects. Figure 6 provides
the same information in graphical form, plus a plot of the
two CSFs.

As an additional check on calibration, the same six subjects
judged the lowest contrast at which characters of different sizes

were legible when filtered to simulate normal vision by using
the unshifted CSF. The contrast of the displayed images was
increased after filtering, making this a test primarily of the in-
formation retained in the filtering and thus minimizing
confounds with the subjects’ own contrast sensitivity. The re-
sults are shown in Fig. 7, compared with tests of human per-
formance in letter-recognition tasks as reported by [19] and the
author-collected data reported in [20].

Finally, Fig. 8 shows the result of applying the filter to the
image of a logMAR chart. In Fig. 8(a), the character size of the
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Fig. 5. Empirically determined acuity for simulated low vision with
FPN � 0.915 cycles∕deg .

Table 1. Predicted and Actual Smallest Legible
Characters for Reduced Acuity and Contrast Sensitivity

Filter
logMAR

Filter Peak
Contrast
Sensitivity

(Pelli–Robson
Score)

Target
Contrast

(Pelli–Robson
Score)

Predicted
Target
logMAR

Actual
Average
Target
logMAR

1.1 2.0 0.75 1.40 1.42
1.1 2.0 0.50 1.30 1.23
1.1 2.0 0.00 1.10 1.13
1.1 1.0 0.75 1.58 1.70
1.1 1.0 0.50 1.40 1.43
1.1 1.0 0.00 1.10 1.12
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top row is logMAR 1.5. In subsequent rows, the character size
drops by 0.2 logMAR units per row. Figure 8(b) shows the
image in Fig. 8(a) filtered with a simulated logMAR acuity
of 1.0 but no reduction in peak contrast sensitivity. The third
line from the top corresponds to an original character size of
logMAR 1.1 and is clearly readable in the filtered image.
The fourth line from the top corresponds to an original
character size of logMAR 0.9 and is clearly illegible in the
filtered image.

4. OTHER ISSUES

We have extended the filtering approach of [6,7] in several
other ways of significance to our target user audience of archi-
tects and lighting designers. These include the reduction of
one type of artifact that appears when simulating low vision,
the addition of color, and the ability to effectively process high
dynamic range input.

A. Thresholding Artifacts

The filtering method described in [6] can produce artifacts
when simulating significant low vision that are not easily no-
ticed in simulations of normal or less degraded vision. Figure 9
shows an example of one type of these artifacts. Figure 9(a)
shows an input image with two equal-sized bars of differing
contrast with respect to the background. Figure 9(b) shows
the results of filtering Fig. 9(a) using the contrast thresholding
method described in [6], using settings that would be predicted
to leave the high-contrast bar visible but suppress the lower-
contrast bar. While the visibility of the two bars in Fig. 9(b)
is as intended, there are also multiple banding artifacts sur-
rounding the visible bar. In Fig. 9(c), the banding artifacts
are much less noticeable.

Figure 10 illustrates the source of these banding artifacts.
Figure 10(a) is a plot of the luminance across one row in the
original image. Figure 10(b) shows a plot of one row of
the unnormalized contrast band associated with a peak band

response frequency of 4.0 cycles/image (0.13 cycles/deg based
on the field of view of the input image). Figure 10(c) shows the
result of thresholding the unnormalized contrast band based on
a per-pixel comparison of the local-luminance-normalized con-
trast band with the CSF. Note that the signal associated with
the low-contrast bar is gone, but that there are also notches near
the zero crossings of the above-threshold contrast associated
with the high-contrast bar. This is the primary cause of the
banding seen in Fig. 9(b). These banding artifacts can be
eliminated by preserving below-threshold contrast values when
they are spatially near above-threshold values of the same sign
[see Fig. 10(d)]. In our case, we define near to be within 25% of
the wavelength at the peak response point of the band. This can

Fig. 8. (a) Original logMAR chart, with third line from top corresponding to logMAR 1.1 and the fourth line from the top corresponding to
logMAR 0.9. For correct character size, view the chart from a distance equivalent to 3.33 times the width of the chart image. (b) Original logMAR
chart, filtered to simulate an acuity of logMAR 1.0. The third line is readable; the fourth line is not.

Fig. 9. (a) Vertical bars of same width with two different contrasts
with respect to the background; (b) low-vision simulation using thresh-
olding in [6]; (c) low-vision simulation using improved thresholding.
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be done relatively efficiently by using O�n� distance transforms
such as in [23].

B. Color

The filtering method described in [6] deals only with
luminance. Architects and lighting designers are used to work-
ing exclusively with color images and find the grayscale
display of simulated low vision to be distracting. There is an
extensive literature on designing visual displays for those with
color-deficient vision, even when the designer has normal color
vision (e.g., [24]). Rather than duplicating that functionality in
our low-vision simulation filter, we have chosen to implement a
more generic approach allowing easy creation of color output
by a variety of methods. We start by transforming the input
image into the CIE xyY (Commission Internationale de
l’Éclairage) color space, which uses one luminance channel
and two normalized chromaticity channels. Simulation of loss
of acuity and contrast sensitivity is done by filtering the lumi-
nance channel as above. We do not apply the same filtering to
the chromaticity channels, since the CSF does not predict the
threshold chromatic sensitivity as a function of spatial fre-
quency. Instead, we use a linear filtering approach applied to
each of the chromaticity channels in isolation, in which the
CSF is used as a MTF. This can result in some pixels ending
up outside the xy gamut, in which case they are clipped to the
nearest in-gamut value. Finally, a color image is reassembled in
which the new Y (luminance) channel is the nonlinearly filtered
original Y channel and the new x and y channels are the linearly
filtered and clipped versions of the original x and y channels.
For demonstration purposes, we have shown how this approach
can be used to provide any desired level of color saturation.

C. High Dynamic Range

Real architectural spaces have a much higher dynamic range of
light levels than can be either displayed on conventional devices
or represented in standard 8-bit/color image file formats. It is
important that this HDR be accounted for in simulations of

low vision. While there are a variety of ways of creating and
representing HDR images of existing spaces (see [25]), our fo-
cus on design applications has led us to use the RADIANCE
modeling and rendering system [26]. Unlike almost all other
modeling systems, RADIANCE allows precise photometric
specifications of lighting and material properties and supports
photometrically accurate simulations of light transport. In ad-
dition, RADIANCE (as with other HDR software) uses a linear
representation of luminance, so filtering is not distorted by the
nonlinear luminance encoding of LDR image representations.
This is particularly important when quantifying actual contrast
values.

One problem with filtering HDR images is that extremely
bright areas of the input image can result in excessive ringing in
the output. We deal with this by clipping these extremely
bright areas to an input-dependent maximum luminance level.
(Glare, which is not simulated in the current model, represents
a substantial problem for low vision individuals. We elaborate
on this in the Discussion.) This level is determined using a vari-
ant of the RADIANCE glare identification heuristic. First,
average luminance over the input image is computed and used
to set a preliminary glare threshold value. This average is not a
robust estimator, since it is strongly affected by very bright glare
pixels or glare pixels covering a large portion of the image. To
compensate for this, a second pass is done in which a revised
average luminance is computed based only on pixels less than or
equal to the preliminary glare threshold. This revised average
luminance is then used to compute a revised glare threshold,
which is used as the clipping value for preprocessing the image.

Another issue with using HDR images in simulations of low
vision is the need to display the results on LDR displays. This
requires some form of tone mapping [25]. Tone mapping is still
an area of active research. Fortunately, the fact that the filtering
approach we are using removes rather than just attenuates con-
trast predicted to be invisible at a particular level of acuity and
contrast sensitivity makes the approach largely insensitive to the
specific tone-mapping method used.

5. EXAMPLES

The filtering approach described in this paper was implemented
in an open-source C program (see [27]). Figure 11 shows the
results of applying this program to two different RADIANCE
models of a Washington, D.C., subway station. The top images
show renderings of the original models. The middle images
show the original renderings filtered to simulate moderate low
vision (Snellen acuity of 20/250, Pelli–Robson contrast sensi-
tivity score of 1.0, and color saturation of 40%). The bottom
images show the original renderings filtered to simulate severe
low vision (Snellen acuity of 20/800, Pelli–Robson contrast
sensitivity score of 0.5, and completely unsaturated color).
In Fig. 11, the left column is based on a photometrically correct
model of the lighting in an actual station. The right column is
based on a modification of the original model that adds direct
lighting to highlight features such as benches, while reducing
indirect lighting to match the original electrical load. The result
is an increase of illumination and contrast in the pedestrian
area. In the left column, the bench at the lower left of the image
is hard to see in the original, and even harder to see as the
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Fig. 10. (a) Luminance profile of Fig. 9(a); (b) plot of one of the
bands produced by the low-vision simulation filter; (c) [6] style
thresholding of band; (d) improved thresholding of band.
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simulated level of visual impairment increases. In contrast, in
the right column the bench continues to be visible even at high
levels of visual impairment, providing evidence that residual
visual function would be an aid to mobility under the modified
lighting condition. This tool provides the ability to explore

options involving the location of luminaires and fenestration,
through changes in the reflective properties of surfaces, and
through changes in the shape and orientation of a potential
hazard or way-finding element. Architects typically make these
choices, hopefully with low-vision guidelines in mind, but they

Fig. 11. Examples of simulated loss of acuity and contrast sensitivity for a RADIANCE model of a Washington, D.C., Metro station (left
column) and the model modified to provide improved lighting (right column).
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currently have no tool to test the visibility consequences of their
choices.

6. DISCUSSION

Our goal is to simulate the loss of visual information associated
with reduced acuity and contrast sensitivity as an aid in creating
visually accessible architectural spaces. To the extent that our
findings generalize to actual low vision and to real-world envi-
ronments, we can predict the features of such spaces that would
not be seen by people with specified levels of reduced acuity
and contrast sensitivity. Doing so can provide architects and
lighting designers with key information not currently available.
This is a challenging task. Predicting the limits of low-vision
visibility requires a quantitative analysis of the geometry and
photometric information available to the viewer, along with
quantitative modeling of the effects of low vision.

There are a number of limitations to the work described
here that still need to be addressed. Most importantly, our
model does not yet account for glare, absolute luminance
and adaptation, or field loss. Glare is a multifaceted and com-
plex phenomenon. While a few automated tools have been
developed to assist in quantitatively analyzing the relationship
between glare and visibility in architectural spaces (e.g.,
[28,29]), little is currently known about how to extend these
tools to account for significant levels of low vision. Contrast
sensitivity decreases at low light levels [30] and is affected
by both spatial and temporal adaptation [12,31,32]. While
none of these effects have been incorporated into our simula-
tion, it would be relatively easy to incorporate existing
techniques if needed.

Our simulation does not explicitly address the impact of
field loss. People with central-field loss often adopt a retinal
region outside of a central scotoma for fixation, termed the
preferred retinal locus (PRL). Typically, acuity and contrast
sensitivity are reduced at the PRL [33]. Our model may be
useful in simulating the visibility of features viewed at the
PRL, but our model does not address the loss of information
within a central scotoma or the eye-movement recalibration re-
quired to bring features of interest to the PRL. Similarly, people
with peripheral field loss may entirely miss seeing targets out-
side of their restricted field of view. Our model only simulates
what is seen when gaze direction brings these targets into view.

The simulation addresses the visibility of targets, but does
not simulate the subjective experience of low vision. Images
filtered to represent low acuity may appear blurry to a normally
sighted viewer, but people with low vision do not necessarily
describe their perception as blurry. We also use color as a
default in our simulations, but not with the intent of simulating
color appearance in low vision. Retinal and other forms of eye
disease often distort normal color vision; our simulation is not
intended to capture these effects.

Finally, it is important to note that our modeling needs to be
validated by testing subjects with actual low vision and mea-
sured values of acuity and contrast sensitivity. To date, there
is little empirical data on predicting the effects of low vision
on the visibility of hazards in real-world situations. Obtaining
more such data will be critical to our ability to improve the
visual accessibility of architectural spaces.
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