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Ahstmct-Forced-choice psychometric functions were determined for the detection of sinewave gratings 
and contrast discrimination of near-threshold gratings at spatial frequencies of 0.5, 2 and 8cideg. 
Detection psychometric functions all had the same S-shaped form. Discrimination functions were almost 
linear except at the upper end, Roth sets of data can be described well by a detection model with a 
positively accelerating relation between contrast and mean decision variable and a differencing decision 
rule. Results of a paired comparisons experiment were consistent with the model and indicate that 
decision variable variance is nearly constant over the range of contrasts used in these experiments. The 
implications of these results for several models of contrast detection and discrimination are considered. 

This study is concerned with the detection of sine- 
wave luminance patterns and the discrimination of 
near-threshold patterns which differ only in contrast. 
Nachmias and Sansbury (1974) showed that forced- 
choice psychometric functions for contrast detection 
and contrast discrimination are markedly different in 
form and that discrimination thresholds near the de- 
tection threshofd are substantially lower than detec- 
tion thresholds. This is sometimes referred to as the 
pedestal effect or facilitation. Nachmias and Sansbury 
also showed that both functions are reasonably well 
described by a simple detection model emptoying a 
differmcing decision rule. In the context of this model 
the results imply that the relation between contrast 
and the magnitude of the decision variable is charac- 
terized by a positively accelerating nonlin~rity.* 
Other results consistent with this hypothesis have 
been obtained by Stromeyer and Klein (1974). Sans- 
bury (1977) and Van Meeteren (1978). 

The present study examines contrast detection and 
discrimination more thoroughly. both empirically and 
theoretically. We used three spatial frequencies and 
determined eight points on each psychometric func- 
tion. In addition to the detection and discrimination 
paradigms. we also employed a paired-comparison 
procedure. Each of the paradigms involved a two- 
alternative temporal forced-choice paradigm. In each 
case the task was the same. Observers indicated which 
of the two intervals contained the higher contrast. 
The paradigms differed only in the selection of the 
contrasts to be discriminated. In the detection para- 
digm one interval contained zero contrast and the 

*This function is sometimes referred to as the overall 
transducer function (Nachmias. 1972). This term is avoided 
here because it leads to confusion between this function 
and theoretical interpretations of it, specifically. the non- 
linear transducer models. 

other contained one of a set of eight contrasts. fn the 
discrimination paradigm one interval contained a con- 
stant, near-threshold contrast (pedestal) and the other 
contained this contrast plus an increment. In the 
paired com~ri~ns pur~~rn a pair of unequal con- 
trasts was selected randomly from a set of four near- 
threshold values, including zero. The results of these 
experiments are compared with the expectations 
inferred from several models of contrast detection and 
discrimination. 

METHOD 

Apparatus 

Vertical sine-wave gratings were generated on a 
CRT display by Z-axis modulation using the method 
of Campbell and Green (3965). The display, designed 
and constructed at the Physiological Laboratory, 
Cambridge, had a P31 phosphor. The constant mean 
luminance was 170cd/m2. In the experiments to be 
reported, all stimuli were within the range in which 
display contrast was linearly relate-d to Z-axis voltage. 

Luminance modulation was horizontally restricted 
to a region symmetrical about the center of the 
screen. The remainder of the screen was maintained at 
the constant mean luminance level without modu- 
lation. This mode of presentation was produced by 
passing the Z-axis signal through an electronic switch. 
The onset and period of switch closure were con- 
trolled by logic pulses that corresponded to that part 
of the display sweep for which luminance modulation 
was desired. The Z-axis sincwave input was derived 
from a function generator. input voltage and duration 
were controlled by a DEC PDP-8 computer. The cir- 
cuitry is discussed in more detail in Legge (1979). 
During each observation interval. the computer 
generated a signal that was converted by a D/A con- 
verter into a DC voltage proportional to the.desired 
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contrast. The output of the function generator was 
multiplied by this voltage. 

Procedure 

Observers viewed the display binocularly, with 
natural pupils at a distance of 114 cm. The screen 
subtended lo” horizontally and 6” vertically. It was 
surrounded by a white surface of approximately the 
same luminance. Stimulus gratings were 6” x 6’ and 
were centered in the display. Observers fixated a mark 
in the center of the display. All gratings were 
presented in cosine phase with respect to this mark. 

A two-alternative temporal forced-choice paradigm 
was used (Green and Swets, 1966). Each trial con- 
sisted of two, 100 msec observation intervals, marked 
by tones, and separated by 600 msec. A signal grating 
was always presented in one and only one of the two 
intervals. The other interval contained either no grat- 
ing or a grating of lower contrast. The signal was 
presented randomly in the first or second interval 
with equal probability. The observer indicated which 
interval contained the signal by pressing one of two 
keys. A correct choice was followed by another tone. 
To minimize the observer’s uncertainty about stimu- 
lus parameters, a 1OOmsec glimpse of the stimulus 
with a contrast approx. 2.4 times threshold was 
presented just prior to each trial. 

Forced-choice psychometric functions were deter- 
mined in the following way. A forced-choice staircase 
procedure (Legge, 1979) was used to estimate the con- 
trast that yielded 75% correct responses. Then eight 
contrast values were selected to use in determining 
the psychometric function. These included the con- 
trast yielding about 75% correct plus seven other 
values, four below it having contrasts of 25, 50,67 and 
83% of this value, and three above it with contrasts of 
117, 133 and 150% of this value. These were presented 
with equal probability in a strictly random order. The 
observer initiated each trial when ready. Typically 
3-5 set intervened between trials. A block of trials on 
a single condition usually consisted of 450 trials. With 
the subject being allowed a brief break after each 150 
trials, a block took about 45 min. The psychometric 
functions in Fig. 1 are each based on four blocks or 
1800 trials. Each point is based on approximately 200 
trials. 

There were three paradigms used in the experi- 
ment: detection, near-threshold discrimination, and 
paired comparisons. In the detection paradigm a sig- 
nal grating was presented randomly in one of the two 
observation intervals. No grating was presented in the 
other interval, the field remaining homogeneous and 
the luminance constant. In the near-threshold dis- 
crimination paradigm a background grating of con- 
stant contrast (pedestal) corresponding approximately 

*A small response bias in favor of the second obser- 
vation interval was found. J.M.F. selected interval 2 on 
57.5X of trials and G.W. on 56% of trials. A bias of this 

I” 
.” 

magnitude has a negligible effect on percent correct (Green 
and Swets, 1966, p. 408). 

lo the detection threshold (75”, correct) was presented 
in both observation intervals of every trial. The signal 
grating was added to this pedestal in one of the two 
observation intervals. randomly selected. Since pedes- 
tal and signal had the same frequency and phase. the 
effect of the signal was simply to increase the contrast 
in the signal interval relative to the no-signal interval. 
In both paradigms the observer’s task was the same. 
to indicate which observation interval contained the 
signal grating. Psychometric functions were obtained 
for both paradigms at three spatial frequencies. 0.5. 2. 
and 8 c/deg (cycles per degree). A second experiment 
which employed a paired comparison paradigm will 
be described below. 

Two male observers participated in this study. 
J.M.F., one of the authors, wore lenses which cor- 
rected his acuity to 20120; G.W. had acuity of 20!20 
uncorrected. A session consisted of a block of trials in 
the detection paradigm and a block of trials in the 
discrimination paradigm. The order of the two para- 
digms was alternated from session to session. The 
three frequencies were presented to J.M.F. in the 
order 0.5,2,8 c/deg and to G.W. in the reverse order. 

After the psychometric functions were determined, 
discrimination over the same range of near threshold 
contrasts was explored using the method of paired 
comparisons. Four values of contrast were used, 0 
and three other values within the range of the psycho- 
metric function. On each trial two different values 
were randomly selected and randomly assigned to the 
two observation intervals. The observer indicated 
which interval contained the grating of higher con- 
trast. Each of the six pairs of gratings was presented 
approx. 300 times and the proportion of trials in 
which the higher contrast was correctly indicated was 
determined. One of the observers. J.M.F., participated 
in the paired comparison experiment. The same three 
spatial frequeicies were used in the order: 8, 2, 
0.5 c/deg. 

RESULTS 

The obtained psychometric functions for both de- 
tection and discrimination are plotted in Fig. l.* The 
detection function describes performance in detecting 
the presence of a grating; the discrimination function, 
performance in discriminating which of two contrasts 
is greater, when the lower contrast on every trial is a 
contrast approximately in the middle of the detection 
function. Pedestal contrast is indicated by the solid 
arrow. Note that the variable plotted on the abscissa 
is contrast, not contrast difference, so the discrimi- 
nation function starts at the contrast of the pedestal. 
The detection functions have a sigmoid form. The dis- 
crimination functions rise more abruptly and are con- 
siderably steeper. Their lower segments are almost 
linear. The contrast which yields 75% correct in detec- 
tion is 24 times larger than the difference in contrast 
that yields 75% correct in discrimination. Open 
arrows indicate these two contrasts. This confirms the 
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Fig. 1. (a) Forced-choice psychometric functions for contrast detection (0) and near-threshold contrast 
discrimination (0) for observer J.M.F. at spatial frequencies of 0.5, 2 and 8 c/deg. The open arrows 
indicate contrasts yielding 75”, correct. The solid arrow indicates the contrast of the pedestal present in 
each observation interval of the discrimination task. See the text for a description of the smooth curves 
through the data points. (b) Same for observer G.W. The standard deviation of these percentages 

computed from the percentages in each of the four sessions averaged about 5”,,. 

finding of Nachmias and Sansbury (1974) that near 
threshold discrimination is better than detection and 
that the psychometric functions have markedly differ- 
ent forms. Earlier Campbell and Kulikowski (1966) 
had shown, using the method of adjustment, that dis- 
crimination thresholds are lower than detection 
thresholds. Kulikowski (1976) and Tolhurst and Bar- 
field (1978) obtained the same result using the method 
of forced-choice. 

The smooth curves through the detection data are 
of the form p = 100 - 50 exp (- aCb), where p is per- 

cent correct and n and b are constants.* They were 
fitted by the method of least squares omitting the data 
point at the lowest contrast and sometimes the point 
at the second to lowest contrast when it deviated 

l This is a variation of the function proposed by Quick 
(1974) for relating the probability of detection in a yes-no 
task to contrast. Our dependent variable is not probability 
of detection on a yes-no task. but rather percent correct in 
a forced-choice task. It happens, however, that the function 
fits our forced-choice psychometric functions well. This 
function has previously been used to fit forced-choice 
psychometric functions by Legge (1978). 

enough from the others as to make a close tit imposs- 
ible. The parameters of the’ fitted functions and the 
number of points on which the fit is based are given 
in Table 1. The parameter h, which reflects the steep 
ness of the function. is close to 3 for all six functions. 
Goodness of fit would be only slightly reduced if h 
were taken as 3 for each function. The parameter (I 
reflects relative sensitivity to the different spatial fre- 
quencies. It is closely related to the threshold con- 
trast. A high value of II indicates a low threshold. The 
smooth curves through the discrimination data are 
not fitted curves. They were theoretical curves whose 
derivation will be discussed below. 

According to Thurstone’s model of discrimination 
(Thurstone, 1927a. 1927b) and commonly used 
models of sensory detection (Tanner and Swets. 1954: 
Green and Swets. 1966). the observer’s response is 
determined by the value of a single random variable. 
D, here called the decision uwioble. This variable has 
one value for each observation interval and these 
values are assumed to be independent. A constant 
contrast, C. is associated with a probability distribu- 
tion of D whose mean is designated by F(.C) and 
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Table 1. Parameters of the function p = 100 - SOexp( -UC’) fitted to the detection 
psychometric function in Fig. 1. p is percent correct; C is percent contrast; a and b are 
constants. Parameters of the function -Z(O,C) = (C/C,)’ fitted to the relation between 
the normal deviate corresponding to the percent correct and the percent contrast in the 

detection condition. C, is the percent contrast needed to yield 2 = I 

Number 
Observer Frequency of points a b / Cl 

J.M.F. 0.5 I 10.56 2.9 2.48 0.467 
2.0 6 52.60 3.0 2.47 0.285 
8.0 7 25.40 3.0 3.04 0.353 

G.W. 0.5 6 18.70 3.5 2.99 0.454 
2.0 6 49.45 2.9 2.11 0.285 
8.0 7 38.90 3.0 2.64 0.344 

whose standard deviation is designated by u(C). In a 
forced-choice task the observer responds by indicat- 
ing the observation interval for which the value of D 
is larger. This will be called the dtfirencing model. 
When the two contrasts to be discriminated are desig- 
nated B and B + C, the probability that the ob- 
server’s response will be correct is the probability that 
D(B + C) - D(B) > 0, where D(C) is the value of the 
decision variable occurring in the observation interval 
during which the contrast is C. If D has a Gaussian 
distribution, this difference also has a Gaussian distri- 
bution with mean F(B + C) - F(B) and variance 
a’(B + C) + r?(B). Thus, the percent correct will cor- 
respond to the percentage of the area of this difference 
distribution that lies to the right of 0. The normal 
deviate of the point at which the difference is 0 (the 
normal deviate corresponding to the percent correct) 
is related to F(C) and u(C) as follows: 

Z(B, B + C) = - [F(B + c) 

- F(B)]/[a2(B + C) + a2(B)p. (1) 

If the standard deviation is constant over the range of 
the psychometric function, that is if u(C) = rr: 

-Z(B, B + C) = [F(B + C) - F(B)]/, 2 0 (2) 

Later, evidence will be given concerning the con- 
stancy of a(C) over the range of these functions. Since 
percent correct will generally be greater than 50, Z 
will generally be negative and -Z will be positive. 
When o(C) is constant, -Z is the difference between 

the mean values of the decision variable correspond- 
ing to the two contrasts B and B + C measured in 
units corresponding to V’2 cr. The difference between 
mean values of the decision variable is often expressed 

in units corresponding to u and is then called d’. 
Thus, when standard deviation is constant: 

d’(B, B + C) = - \ 2 Z(B, B + C). (3) 

From equation 2, letting F(0) = 0, the value of d’ for 
detection, d’(0, C), is: 

d’(0, C) = d’(C) = - ~ 2 Z(0, C) = F(C)/u. (4) 

Both -Z(B. B + C) and d’(B, B + C) are com- 
monly referred to as psychometric functions, even 

though they are not linearly related to percent cor- 
rect. To distinguish them from the percent correct 
function and from each other, we will refer to the first 
as the Z function and to the second as the d’ function. 
These functions are simply transforms of percent cor- 
rect as a function of C in a two alternative forced 
choice task. 

Thus, according to this model, if we assume equal 
variance, -Z(O, C) and d’(0, C) are proportional to 
the mean, F(C), of the decision variable distribution. 
We will refer to the function F(C), which is defined 
by equation 4, as the F function. From equations 2 
and 4: 

-Z(E, E + C) = -Z(B + C) - [-Z(B)] (5) 

Thus, the model implies that the normal deviate cor- 
responding to percent correct for the discrimination 
of two contrasts is the difference between the normal 
deviates for the detection of the same two contrasts. 
This property has been referred to as Z additivity 
(Pelli, 1979). 

The Z function is shown by the open circles in 
Fig. 2 for each of the six detection psychometric func- 
tions of Fig. 1. The normal deviate can be seen to be a 
concave upward function of contrast. This relation 
was fitted with a function of the form: 

-Z(O, C) = (C/C,Y (6) 

where Ci is the contrast which yields Z = 1 (84% 
correct) and f is a constant. The same upper 6 or 7 
points were used to fit the curves as were used to fit 
the curves in Fig. 1. Parameters of the fitted curves 
are given in Table 1. The parameter 1‘ averages about 
2.6 and shows no clear trend with spatial frequency, 
although both observers show a minimum at 2 c/deg. 
If still fewer points are used, agreement among values 
offimproves. For example, if only six points are used 
at 8 c/deg, the value off is 2.49 for both subjects. A 
value off = 2.5 gives a good fit to all functions except 
at the lowest contrast values, where the data are more 
variable. 

Nachmias and Sansbury (1974) fitted a function of 
the same form to data on forced-choice detection of a 
9 c/deg grating. Their exponents were 2.2 and 2.9 for 
their two observers. Using a confidence rating method 
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Fig. 2. (a) (0). Normal deviate transform of percent correct (Z function) in detection task as a function of 
percent contrast. (0). Normal deviate transform of percent correct in discrimination task plus the 
normal deviate of the pedestal contrast derived from the detection data. ( x ). Normal deviates derived 
from the paired comparisons data using the equal variance model. ( + ). Normal deviates derived from 
the paired comparisons data using the variable variance model (F function). (b) Same for observer G.W. 

G.W. did not participate in the paired comparisons experiment 

to study detectability of a 9c/deg grating, Stromeyer 
and Klein (1974) obtained quite comparable results. 
They assumed that standard deviation increases at l/4 
the rate of the mean and fitted their data with a more 
complicated function in which the exponent decreases 
from 4 to 2 as contrast increases. Van Meeteren (1978) 
also found a positively accelerating relation between 
d’ and grating contrast using a yes-no paradigm. In 
all of these experiments contrast remained constant 
during a block of trials. This procedure leaves open 
the possibility that the nonlinearity is due to a de- 
crease in criterion variance as contrast increases 
(Wickelgren, 1968; Nachmias and Kocher, 1970). 
When the contrast is varied randomly from trial to 
trial, as in the present experiment, there is no way in 
which criterion variance could vary with contrast. 
Sachs et al. (1971) reported an extensive study using a 
yes-no procedure. They fitted their data with a Z 
function that was linear with contrast together with a 
correction for guessing. Without the correction, the 
relation between Z and C was positively accelerating 

in most cases. However, in 17 of 41 data sets no cor- 
rection for guessing was needed. These particular data 
sets appear to be at variance with the rest of the data. 
A number of investigators have obtained psycho- 
metric functions consistent with positively accelerat- 
ing Z functions from data on luminance increment 
detection using forced-choice, yes-no, and rating scale 
experiments (Tanner and Swets, 1954; Leshowitz et 
al.. 1968; Nachmias and Kocher. 1970; Cohn er 01.. 
1974). Exponents of fitted power functions range from 
1.5-3.3. 

If Z additivity (equation 5) holds. then the Z func- 
tion for discrimination should correspond to the 
upper portion of the Z function for detection. To test 
this the value of Z (from the fitted curve) correspond- 
ing to the pedestal contrast was added to each normal 
deviate derived from the discrimination experiment. 
These values are plotted as rectangles in Fig. 2. They 
lie very close to the Z function derived from the de- 
tection data. 

It is now possible to explain how the curves 
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Table 2. Paired-comparisons experiment. Percent correct 
for each pair of grating contrasts. Observer J.M.F. n o 300 

Spatial 
frequency 

(cideg) 

0.5 

2.0 

8.0 

Contrast 
pair 

(Percent 
contrast) 

0.533.0.400 
0.533.0.267 
0.533.0 
0.400,0.267 
0.400,0 
0.261.0 

0.307,0.230 
0.307,0.153 
0.307.0 
0.230.0.153 
0.230,O 
0.153.0 

0.400,0.300 
0.400,0.200 
0.400.0 
0.300.0.200 
0.300,o 
0.200.0 

Percent 
correct 

82.2 
90.1 
94.1 
64.6 
76.3 
60.2 

77.7 
87.3 
88.4 
64.7 
76.0 
59.6 

76.2 
88.4 
89.8 
62.9 
16.5 
56.9 

through the discrimination functions in Fig. 1 were 
obtained. The fitted Z function of Fig. 2 was used to 
predict these functions using equation 5. The value of 
Z at each of the contrasts (constant pedestal plus in- 
crement) used in the discrimination task was deter- 
mined from this fitted function. The normal deviate of 
the pedestal was subtracted from this value and the 
resulting value of Z(B, B + C) transformed to percent 
correct. These values correspond to the smooth 
curves through the discrimination data in Fig. 1. The 
fit is quite good. Thus, the Z function can be used to 
predict near-threshold discrimination performance 
from detection performance without any additional 
parameters. This was first shown by Nachmias and 
Sansbury (1974) for 9 c/deg gratings. They, however, 
had only 3 and 5 points on their two discrimination 
functions and the fit was not as convincing as in the 
present case. Sansbury (1977) obtained a similar result 
using a square-wave masker. The fact that the same Z 
function describes both detection and discrimination 
data precludes the possibility that there is a large 
enough change in decision variable variance to 
account for the nonlinearity of the Z function. A large 
difference between u(O) and o(B) would cause Z to 

increase less rapidly with contrast in the discrimi- 
nation paradigm, since the denominator of equation 1 
would be larger. 

The paired comparisons experiment provides 
another test of the form of the Z function, Z addi- 
tivity, and a more powerful test of the equal variance 
assumption. Here the data are the six values of per- 
cent correct corresponding to the six pairs of con- 
trasts used in the experiment. These values are 
presented in Table 2. They were used to compute the 
normal deviates corresponding to the difference 

between zero and the three non-zero contrasts and to 
test the equal variance model. The data were analyzed 
in the manner of Thurstone’s Case V. (Thurstone. 
1927a; Togerson, 1958). In this analysis percent cor- 
rect for each pair of stimuli is transformed into the 
corresponding normal deviate. These normal deviates 
are taken as estimates of the differences in mean de- 
cision variable for each of the pairs of stimuli. The 
method of least squares is used to find a single value 
for the difference between each pair of stimuli. The 
resulting values of Z are plotted as x’s in Figure 2. 
They lie quite close to the Z function derived from 
detection. A x2 test of goodness of fit (Bock and 
Jones, 1968, p. 135) showed that the equal variance 
model fits the data almost perfectly at 0.5 c/deg, but 
that deviations from this model were barely signifi- 
cant at the other two frequencies. At 2c/deg 

x2 = 11.38, u” = 3, P < 0.01. At 8 c/deg x2 = 10.27. 
d’= 3, P < 0.025. Thurstone’s case IV analysis (Tor- 
gerson, 1958) was then carried out. This estimates the 
ratios among the standard deviations of the decision 
variable at different contrasts as well as the values of 
the Z function corrected for the change in standard 
deviation, i.e. F(C). Values of the estimated ratio of 
standard deviation at each contrast to the SD at zero 
contrast are given in Table 3. It can be seen that as 
contrast increases standard deviation at first decreases 
and then increases again. This is contrary to the usual 
finding for light detection, which is that standard de- 
viation increases in proportion to the change in the 
mean with the constant of proportionality being 
about 0.25 (Nachmias and Kocher, 1970; Swets et al.. 
1961). Stromeyer and Klein (1975) reported a value of 
0.27 in an experiment on grating detection. In all 
three studies, however, the conclusion is based on the 
slope of the ROC curve. This parameter is influenced 
by changes in criterion variance (Wickelgren, 1968), a 
factor that seems unlikely to be important in the 
forced choice paradigm. However, the present study is 
not extensive enough to be decisive with respect to 

Table 3. Estimates of the ratio of standard 
deviation of the decision variable at contrast 
C to the standard deviation at zero contrast, 

c(CVc(O) 

Frequency Percent 
(c/de& contrast c(C)/~0) 

0.5 0 1.00 
0.27 1.02 
0.40 1.01 
0.53 1.01 

2.0 0 1.00 
0.15 0.77 
0.23 0.70 
0.31 0.92 

8.0 0 1.00 
0.20 0.79 
0.30 0.85 
0.40 1.18 
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Table 4. Models of detection and near-threshold discrimination considered in this 

paper 

Nature of Nonlinearity 
Monotonic Nonmonotonic (Threshold) 

Nonlinear 
Transducer 
(noise originates ,followed by noise Threshold followed by noise 
centrally) 

(noise originates 
in sensory 
channels) 

Likelihood ratio 
with signal and 
pedestal uncertain 

Maximum response with 
signal and pedestal 
uncertain 

Note. All the models involve a nonlinear transformation of sensory signals fol- 
lowed by the addition of noise. Each model is consistent with a positively accelerat- 
ing detection Z function. Only those which are not cross-hatched are consistent 
with detection, discrimination, and noise masking results. 

the standard deviation function. What does seem 

clear is that any change in the standard deviation 

over the range of the psychometric function is rela- 

tively small, too small to account for or even greatly 

influence the form of the relation between the normal 

deviate and contrast. This is illustrated by the plus 

symbols (+ ) in Fig. 2 which indicate the value of the 

F function yielded by the case IV analysis. which uses 

the varying estimates of standard deviation in com- 

puting the relation between mean decision variable 

and contrast. The values are seen to be only slightly 

different from those computed using the equal stan- 

dard deviation assumption. In either case the f func- 

tion has a marked positively accelerating nonlinearity 

near threshold. 

In this paper we are concerned with only a very 

small part of the range of the F function at the lower 

end. It is possible to apply the same approach over 

the entire range of the function. We have done this as 

part of a more general study of contrast masking 

(Legge and Foley, 1980). Above threshold the F func- 

tion becomes decelerating. that is. it shows a compres- 

sive type of non-linearity. 

The results may be summarized as follows. 2 func- 

tions were found to be power functions having expo- 

nents of about 2.5. Z additivity was obtained. The 

data were well fitted by a model which assumes a 

differencing decision rule. Gaussian decision variable 

distributions of approximately constant variance and 

a nonlinear relation between mean decision variable 

and near-threshold contrast. 

DISCLSSION 

The differencing model with a positively accelerat- 

ing F function and approximately constant variance 

accounts for contrast detection and near-threshold 

discrimination ‘at one level of analysis. It attributes 

the form of the d’ or Z functions for both detection 

and discrimination to a positively accelerating non- 

linearity in the I: function. Yet. in the literature on 

detection. hypotheses and models are found which go 

further in that they specify processes that underlie the 

nonlinearity of the Z function. Among these models 

are uncertainty models, which attribute the non- 

linearity to the observer’s lack of knowledge of stimu- 

lus parameters. These are opposed to simpler ideas 

that we will refer to as nonlinear transducer models. 

It is of interest to consider how our results bear on 

these models. 

We will consider several models. None of these are 

fully specified in the literature for forced-choice detec- 

tion and discrimination. They are extensions of ideas 

found in the literature. Table 4 summarizes the 

models that we will consider. 

These models attempt to explain why F(C) is posi- 

tively accelerating and u(C) is approximately con- 

stant. Since the stimulus field is large and its average 

luminance remains constant throughout, it seems 

reasonable to assume that the variance due to quan- 

tum absorption is approximately Gaussian and 

remains constant for low contrast grating stimuli. The 

problem is to discover what process introduces a non- 

linearity in F(C). while u(C) remains constant. Any 

nonlinear transformation of the decision variable will 

affect both F(C) and u(C) and the form of the decision 

variable distribution. However, any monotonic trans- 

formation will have no effect on Z. since performance 

depends only on Ihe sign of the difference of the two 

values of the decision variable obtained on each trial. 

and a monotonic transform will leave this sign 

unchanged. A consequence of this is that. although we 

have shown that our data are consistent with a de- 

cision variable that has a Gaussian distribution. any 

monotonic transformation of this variable produces 

another model that describes the data equally well. 
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Nonlinear transducer models 

A monotonic nonlinear transducer* which is fol- 
lowed by the addition of Gaussian noise provides a 
simple model which adequately describes our data. 
The amplitude of the post-transducer noise must be 
large relative to the pretransducer noise to make the 
decision variable variance approximately constant. 

A nonmonotonic transducer that produces the 
same output for all inputs up to some threshold value 
and a linear input-output relation above this value 
(threshold transducer) affects both F(C) and a(C), but 
it affects them differentially so that 2 is a positively 
accelerating function of contrast. If the threshold is 
set so that it is rarely exceeded at 0 contrast, then in 
the detection case this model reduces to the high 
threshold or double-detection model (Blackwell, 1963; 
Treisman and Leshowitz, 1969). In the high-threshold 
model the decision rule is to select the interval in 
which the decision variable exceeds the threshold and, 
if neither exceeds it, to respond randomly with the 
two responses having equal probability. In the detec- 
tion case, since the threshold is rarely exceeded by 
noise alone, this rule is equivalent to a differencing 
rule with the provision that should the difference be 0, 
the response will be random. The presence of the 
threshold reduces the percent correct below what it 
would be in the absence of the threshold. The reduc- 
tion is greatest at low contrasts where the observer 
frequently responds randomly. The result is a posi- 
tively accelerating Z function. The goodness of fit of 
this model to our detection results was examined in 
the following way. According to this model the per- 
cent correct is related to the percentage of trials on 
which the threshold is exceeded (percent detected pd 
as follows (Green and Swets, 1966, p. 129): 

p = pd + 0.5 (100 - pd) = 0.5 (100 + pd), (7) 

so that the percentage of trials on which the signal is 
detected is: 

p,, = 2p - 100. (8) 

We call the sensory signal prior to the threshold the 
input. Input is a Gaussian random variable with con- 
stant variance. Mean input r(C) is proportional to 
contrast: 

r(C) = gc. (9) 

The percent detected, pd. corresponds to the percent- 
age of the area of the decision variable distribution 
that exceeds the threshold. Consequently, the normal 

l In this context “nonlinear transducer” refers to a non- 
linear transform imposed on the input. Although this term 
is frequently used in this way in discussions of sensory 
detection, “nonlinear transform” would appear to be pre- 
ferable, since there is no implication that the receptor cells 
(transducers) are the nonlinear elements. In general, the 
transducer function is not identical to the F function, 
which relates the mean decision variable to contrast, 
although in the monotonic nonlinear transducer model the 
two functions are the same. 

deviate corresponding to the percent detected, Zd, is 
related to the mean of the input distribution r(C) 
measured in standard deviation units as follows: 

-& = r(C) - I, = gc - I,. (10) 

where I, is the magnitude of the input at threshold 
measured in standard deviation units relative to the 
mean of the 0 contrast distribution. We fitted the re- 
lation between Zd and C with a straight line. The fit 
was quite good. However, this model predicts that the 
ROC curve for contrast detection will be a straight 
line, contrary to the results of Stromeyer and Klein 
(1975). 

The inadequacy of the threshold transducer model 
to our own data becomes apparent when we consider 
the discrimination results. Here the pedestal will be 
detected half the time, since the pedestal is chosen so 
that p in equation 8 is about 75. The pedestal plus 
signal will be detected half the time or more, depend- 
ing on the signal contrast. Thus, a random response 
will occur on at most about 25% of trials and this 
percentage will decrease as signal contrast increases. 
As a consequence, the nonlinearity of the Z function 
will be considerably lessened. The predictions of the 
model cannot be readily derived analytically, but we 
have examined them by means of a computer simula- 
tion. The model produces a nearly linear Z function 
for discrimination which is shallower than the upper 
region of the detection function. Thus, the model pre- 
dicts a failure of Z additivity. It also predicts that a(C) 
increases with contrast. Since these predictions do not 
correspond with our results, this simple threshold 
transducer model is rejected. 

A threshold transducer which is followed by the 
addition of noise is consistent with our results. The 
noise amplitude must be large relative to the pre- 
transducer noise so that decision variable variance is 
approximately constant. Figure 3 depicts a model 
which incorporates a nonmonotonic transducer. The 
input first passes through a linear spatial frequency 
filter whose mean output is proportional to contrast 
for a constant input waveform. Although the present 
result does not implicate such a filter, there are 
numerous studies that do. See, for example. Braddick 
et a/. (1978). A model must incorporate such a filter if 
it is to describe performance in which there are mask- 
ing stimuli of different frequencies from the signal 
(Legge and Foley, 1980). The output of the linear 
filter is the input to the nonmonotonic transducer. 
This input is assumed to be noisy due to the quanta1 
fluctuation of light emission. As a consequence, the 
mean output of the transducer is a positively acceler- 
ating function of contrast. Noise is then added to 
make the variance of the decision variable approxi- 
mately constant. It is assumed that neither the trans- 
ducer nor the noise amplitude are influenced by the 
momentary stimulus or the observer’s cognitive state. 

Lasley and Cohn (1981) have shown that noise 
masking experiments provide a basis for testing the 
monotonic transducer followed by noise model. The 
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Figure 3. Block diagram of nonlinear transducer model in 
which the non-linearity is produced by a threshold device 
followed by the addition of Gaussian noise. The three dis- 
tributions in each panel correspond to the distributions of 
central events associated with three equally spaced values 

of contrast 0, Ct. and C2. 

properties of this model depend on the fact that the 
pre-transducer noise amplitude is small relative to the 
noise added after the transducer. If large amplitude 
noise is added to the stimulus, the noise added after 
the transducer will have little consequence and the 
model will perform like a monotonic transducer with- 
out added noise. The monotonic model will yield a 
linear Z function. The threshold transducer model, on 
the other hand, will continue to yield a positively 
accelerating Z function. The nonlinearity, however, 
will decrease as noise amplitude increases. Pelli (1979) 
studied the detection of gratings in the presence of 
continuous dynamic visual noise. He showed that Z 
function nonlinearity does not disappear for a noise 
amplitude sufficient to raise the contrast threshold by 
a factor of 10. He describes the shape of the psycho- 

l This common form of the models is explicit for all the 
models except the maximum response models. The maxi- 
mum response models also have this form in the following 
sense. A threshold nonlinearity in each channel. with the 
threshold set at the maximum response occurring in the 
first observation interval, followed by summing the outputs 
across channels. will yield the same decisions as a maxi- 
mum response decision rule. 

metric functions as being unchanged by the noise. 
This result rejects the monotonic transducer model. 
The implications of this experiment for the non- 
monotonic transducer model require a more careful 
examination. Pelli’s noise was continuous and, conse- 
quently, it would seem likely to have produced adap 
tation as well as masking. Up to this point we have 
assumed that the threshold remains fixed. However. a 
model in which the threshold shifts with the state of 
adaptation is not altogether implausible. Even if the Z 
function remains constant in form as noise amplitude 
increases, a model in which the threshold varies with 
the state of adaptation is not excluded. 

Uncertainty models 

Uncertainty models have been presented as a poss- 
ible way to reconcile linear cellular responses in the 
peripheral visual system with the nonlinearity of the 
d’ function (Nachmias, 1972). However, uncertainty 
models are like nonlinear transducer models in that 
both incorporate a nonlinear operation preceding the 
decision. Neither typ of model attempts to place this 
nonlinearity anatomically and both are compatible 
with a central locus. Commonly, the non-linearity is 
described as preceding the decision making process in 
the non-linear transducer models and as part of the 
decision making process in the uncertainty models. 
This distinction, however, has no empirical conse- 
quences in the kinds of experiments we are consider- 
ing. In each case the nonlinearity is followed by the 
addition of a noisy input.* Thus, the uncertainty 
models have the same general form as the nonlinear 
transducer models. The critical difference between the 
uncertainty models and the nonlinear transducer 
models is that in the uncertainty models the additive 
noise arises from sensory events that are insensitive to 
the signal. This means that the additive noise is sub- 
ject to influence by a stimulus, such as a masker, 
which accompanies the signal. The contribution of 
these events is attributed to the observer’s uncertainty 
regarding stimulus parameters. The term “uncer- 
tainty” suggests that the input from these insensitive 
events is subject to influence by cognitive factors, but 
the operations that will cause subjective uncertainty 
to vary are not specified. The uncertainty models also 
differ from the nonlinear transducer models in the 
nature of the nonlinear transform. 

Two kinds of uncertainty models have been pro- 
posed. These are likelihood ratio models in which the 
decision variable is a likelihood ratio (Peterson et al., 

1954; Tanner, 1961; Cohn et al., 1974; Green and 
Birdsall, 1978) and maximum response models in which 
the observer monitors M channels, one of which is 
sensitive to the signal, and in which the decision vari- 
able is the maximum response obtained from all 
channels in each observation interval (Wainstein and 
Zubakov, 1%2; Nachmias and Kocher, 1970). If the 
inputs to the decision process are assumed to have 
Gaussian distributions of equal variance, the two 
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Table 5. Signal uncertainty model. Detection: values of parameters M and y. Discrimination: Values of 
the parameters Ct./. M and y. Values determined by fitting functions using the methods of least squares 

Spatial 
frequency Detection Discrimination 

Observer tcideg) M Yd., Cl f M Q&W %l.d%n 

J.M.F. 0.5 296 7.55 0.181 1.05 1.3 8.23 1.09 
2.0 285 12.35 0.119 1.43 7.2 20.39 1.65 
8.0 2032 10.84 0.137 1.56 11.8 19.22 1.77 

G.W. 0.5 1737 8.36 0.151 1.25 3.5 13.65 1.63 
2.0 64 11.63 0.101 1.30 4.3 16.64 I .43 
8.0 534 10.62 0.128 1.12 I.9 12.56 1.19 

kinds of uncertainty models produce very similar pre- 
dictions (Nolte and Jaarsma, 1967). 

Likelihood ratio uncertainty models are derived 
from models of ideal detectors. An ideal detector is 
one that yields the best possible performance in a 
detection task. limited only by the variability of the 
physical stimuli. Likelihood ratio models of visual de- 
tection are generally degraded versions of ideal detec- 
tors in that they are characterized by receptor quan- 
tum efficiencies less than 1 (not every photon pro- 
duces a visual effect). and intrinsic noise (Nachmias, 
1972). However. they retain the optimal decision rule, 
which for two-alternative forced-choice is a differenc- 
ing decision rule in which the decision variable is a 
likelihood ratio. or what is equivalent. a monotonic 
transform of the likelihood ratio. A likelihood ratio is 
the ratio of the probability of some event. given that 

the signal has been presented, to the probability of the 
same event, given noise alone.* Such a detector must 
identify events precisely and then determine their like- 
lihood ratios by referring to stored probability distri- 
butions. It is assumed that the events Ii on which the 
decision is based may be represented by Gaussian 
random variables of equal variance. with mean ri 

being a linear function of contrast. The detection pro- 
cess may be described as follows. First, a likelihood 
ratio is computed for the event associated with each 
of the M possible signals. This ratio is computed 
using the distribution that I, would have if signal i 
were present. This likelihood ratio is related to Ii and 
rl’ (the difference between the means of the I, distribu- 

tions with and without the signal) as follows (Green 
and Swets. 1966. p. 60): 

/(I,) = exp (d’l,). (11) 

This is a monotonic posttively accelerattng transform- 
ation of I,. The ,ZI likelihood ratios are then added 
together and divided by M to give the overall likeli- 
hood ratio /(I): 

I(I) = (l/M)$exp(d’l,). (12) 

*The phase “some event” is left deliberately vague in 
these models. In principle. the event may be distributed 
over space and time. In certain ideal detector models. the 
event corresponds to the value of the cross-correlation 
between the expected signal and the obtained waveform. 

where I = Ii. 12,. . . I,,,. This overall likelihood ratio 
is the decision variable in the likelihood ratio model. 

It is a positively accelerating function of contrast and 
its variance also increases with contrast due to the 
exponential transform (Peterson et al.. p. 207). Since 
both mean and variance increase and the distribu- 
tions are not Gaussian. the implications of this model 
for the form of the Z function are not obvious. It can 
be shown that for M = 1, the Z function is linear. In 
this case the model reduces to a monotonic trans- 
formation of the input which, as we have pointed out, 
has no effect on performance. For M 2 2. the Z func- 
tion is positively accelerating and becomes increas- 
ingly so as M increases. Analytically, the dependence 
of Z on M has been described only by an approxi- 
mation (Peterson er al., 1954, p. 207). However. exact 
values have been computed for values of M from 2 to 
100 (Nolte and Jaarsma, 1967). We extrapolated from 
their values to fit this model to our detection data. 
The fit is about as good as that of the differencing 
model (Fig. 2). Values of the parameters M (the 
number of potential, orthogonal. equally detectable, 
equally likely signals) and g the constant of proportio- 
nality between r(C) and C (equation 9) are given in 
Table 5. 

The second kind of uncertainty model is the maxi- 
mum response model. This is an extension of the 
model of Wainstein and Zubakov (1962) and Nach- 
mias and Kocher (1970) to forced-choice detection 
and discrimination. This model was developed for 

yes-no detection tasks. According to this model, the 
observer monitors the output of M channels. only one 
of which is affected by the signal. A criterion is set so 
that, if the output of every channel is less than the 
criterion, the decision is that no signal is present. but 
if the output in at least one channel exceeds the cri- 
terion. the decision is that a signal is present. This 
model is extended to forced-choice by assuming that 
in each observation interval the maximum response is 
determined. This maximum response is the decision 
variable. The interval is selected for which this maxi- 
mum response is largest. If the distributions of chan- 
nel responses Ii are Gaussian and of equal variance, 
this model predicts very nearly the same performance 
as the likelihood ratio uncertainty model (Nolte and 
Jaarsma, 1967). Therefore. it gives an equally good fit 
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to the contrast detection results with the same value 
of the parameter M. 

The literature contains very little discussion of the 
application of uncertainty models to pedestal dis- 
crimination taks. Cohn et al. (1974), working on 
luminance detection. found that although their detec- 
tion d’ function was nonlinear, discrimination from a 
pedestal near the detection threshold ‘produced a 
linear function. They interpreted this result, following 
a suggestion made by Tanner (1961). as indicating 
that the nonlinearity was due to uncertainty and that 
the pedestal eliminated the uncertainty. In the present 
study di~rimination d’ functions are not linear, but 
are more nearly linear than the detection functions. 
By a generalization of Cohn et al.‘s hypothesis, this 
might be attributed to a reduction of uncertainty. The 
uncertainty reduction hypothesis does not constitute 
a complete model of discrimination performance. It 
leaves unspecified whether there is uncertainty for the 
signal only or uncertainty for both pedestal and sig- 
nal. The hypothesis suggests that the system has infor- 
mation about the pedestal. If the pedestal were as 
uncertain as the signal alone, how could it reduce the 
uncertainty of the signal’! Furthermore. it turns out 
that if pedestal and signal are equally uncertain, our 
results can be explained without resort to uncertainty 
reduction. We have examined both siynai-on/y uncer- 

tain models and signal-and-pedestal uncertain models 
in relation to our results. 

In a likelihood ratio model performance depends 
on how the likelihood ratios are computed. This in 
turn depends on what the system takes the signal and 
no signal distributions lo be. As has been noted, in 
the detection case the likelihood ratios are computed 
as, if each of the M signals were present. In the pedes- 
tal case. the signal and no-signal distributions associ- 
ated with the sensitive event have a constant added to 
each value. In the signal-only uncertain model. the 
no-signal distribution produced by the pedestal is 
used to compute the likelihood ratio for the sensitive 
event only and not for the insensitive events. This 
produces likelihood ratio distributions that are the 
same with the pedestal as without. Consequently, the 
2 function will have the same form with and without 
the pedestal unless uncertainty changes. Thus. this 
model can account for the obtained change in the 
form of the Z function when a pedestal is present only 
with the additional assumption that the pedestal pro- 
duces a reduction in uncertainty. We compared our 
data to the expectations of this model by using the 
form of the discrimination Z function to determine 
the parameters M and g in just the same way as we 
had done for the detection data. Discrimination 
should yield a lower value of M. but the same value of 
g as the detection data. Values of these parameters are 
given in Table 5. Contrary to the expectations of this 
model, values of g are consistently higher for discrimi- 
nation than for detection. Thus. this likelihood ratio 
uncertainty mode1 with uncertainty for the signal 
alone is rejected. The corresponding maximum re- 

sponse model is one in which the response of the 
sensitive channel is specified relative to the pedestal 
alone distribution, so that a shift in this distribution 
produced by addition of a pedestal has no effect on 
performance. To specify the response in this way, the 
system would have to have information concerning 
the pedestal alone distribution. Since the pedestal has 
no effect on performance, the predicted form of the Z 
function is the same as for detection and essentially 
the same as that inferred from the likelihood ratio 
model. Hence, this model is rejected by the result de- 
scribed in Table 5. 

The other way to generalize the signal uncertainty 
models to the discrimination paradigm is to assume 
that the observer is uncertain of the pedestal as well 
as the signal (signal-and-pedesial uncertain models). In 
the likelihood ratio model, likelihood ratios are com- 
puted as if the pedestal influenced each of the M 

events, i.e. as if the distribution of each li were in- 
creased by a constant. Since there is actually only one 
event which is influence-d by the pedestal and signal. 
the likeliho~ ratios associated with the other events 
will become increasingly smaller as pedestal contrast 
increases, and the one sensitive event will increasingly 
determine the overall likelihood ratio. Thus, even 
though uncertainty remains constant, the effect of 
uncertainty decreases as the pedestal contrast in- 
creases. Here the prediction of the pedestal effect is 
inherent in the model. 

The corresponding maximum response model 
assumes that no account is taken of the pedestal in 
determining the maximum response. As pedestal con- 
trast increases, the maximum response will tend to 
occur more and more frequently in the one sensitive 
channel. Thus. the effect of the uncertainty will de- 
crease even though all M channels continue to be 
monitored. Pelli (1980) has computed the predictions 
of this model for our observer J.M.F. and has shown 
that it gives a reasonably good fit. He used the same 
values of M as are given in Table 5. This model does 
not predict Z additivity exactly, but it does predict 
approximate 2 additivity over the range of our data. 

Since all of the models considered have a common 
form. a nonlinearity followed by noise, and some of 
these are consistent with our results, we conclude that 
the results can be explained by such a process. It is 
possible that the system is more complicated than any 
of these models, perhaps by combining elements from 
several of them. The principle difference among the 
models is whether the noise arises centrally (nonlinear 
transducer models) or ~ripherally in sensory chan- 
nels that are insensitive to the signal (uncertainty 
models). Recent experiments indicating that this noise 
is not “swamped” by masking noise favor the latter 
alternative. 

The possibility that our results might be accounted 
for by stimulus uncertainty raises several questions. 
(1) Since it is demonstrable that human observers can 
identify stimuli at threshold at least on some dimen- 
sions (e.g. Thomas, 1978; Burr, 1980), why is this in- 
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formation not used in detection tasks? (2) What are 
the dimensions of uncertainty? The signal and pedes- 
tal uncertainty models imply that even a low contrast 
pedestal which differs from the signal along a dimen- 
sion of uncertainty will greatly reduce performance. 
Legge and Foley (1980) have shown that pedestals of 
different spatial frequency from the signal do not 
reduce performance until their contrast is well above 
tbreshoid. This suggests that uncertainty along the 
spatial frequency dimension is not responsible for our 
results. Onset and offset uncertainty would be 
expected to have larger effects for short duration 
stimuli. yet, in general. psychometric functions have 
the same form over a wide range of durations (Green 
and Lute. 1975). although this has not yet been shown 
for grating detection. (3) What operations. if any, will 
reduce uncertainty’! We expected that. if uncertainty 
were a factor in these experiments. the suprathreshold 
glimpse of the stimulus which was presented just prior 
to each trial would reduce it. Yet our Z functions are 
just as nonlinear on the average as those of Nachmias 
and Sansbury (1974). who did not use this technique. 
(4) If thresholds depend on uncertainty as well as the 
sensitivity of the detecting channel and uncertainty 
varies with the stimulus and the perceiver’s cognitive 
state. can thresholds provide an accurate indication of 
the sensitivity of the detecting channel’? We conclude 
that. although the uncertainty models appear to be 
the most viable at the present time. they pose a 
number of problems that can only be answered by 
further experimentation. 
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