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Contrast discrimination in noise
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Even the highest contrast sensitivities that humans can achieve for the detection of targets on uniform fields fall far
short of ideal values. Recent theoretical formulations have attributed departures from ideal performance to two
factors—the existence of internal noise within the observer and suboptimal stimulus information sampling by the
observer. It has been postulated that the contributions of these two factors can be evaluated separately by
measuring contrast-detection thresholds as a function of the level of externally added visual noise. We wished to
determine whether a similar analysis could be applied to contrast discrimination and whether variation of the
increment threshold with pedestal contrast is due to changes in internal noise or sampling efficiency. We measured
contrast-increment thresholds as a function of noise spectral density for near-threshold and suprathreshold
pedestal contrasts. The experiments were conducted separately for static and dynamic noise. Our findings
indicate that the same formulation can be applied to contrast discrimination and that changes in the estimated
values of internal noise, rather than changes in sampling efficiency, play the major role in determining properties of
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contrast discrimination. Implications for models of contrast coding in vision are discussed.

INTRODUCTION

The research reported here was conducted in two laborato-
ries—one at the University of Minnesota (Minnesota) and
the other at the University of British Columbia (UBC). At
Minnesota, contrast discrimination was measured for 2-cy-
cles/degree (c/deg) sine-wave gratings in two-dimensional
dynamic visual noise. At UBC, contrast discrimination was
measured for 13.6-arcmin-diameter disks in two-dimension-
al static noise. The details of apparatus and procedure
differ somewhat, but the research questions are the same.
We are therefore presenting our results in a single paper.

In a contrast-discrimination experiment, observers are re-
quired to distinguish between pairs of stimuli identical ex-
cept for their contrasts C and C + AC. The threshold value
of AC is called the contrast-increment threshold. The val-
ue of C upon which it is superimposed is called the pedestal
contrast. The relation between AC and C for a given target
is called the contrast-discrimination function for that tar-
get.

Authors of recent studies' generally agree that the con-
trast-discrimination functions for many stimuli are dipper
shaped. As pedestal contrast rises from zero, the increment
threshold first declines. This facilitation effect occurs for
pedestal contrasts near the contrast-detection threshold.
For suprathreshold contrasts, AC rises with pedestal con-
trast. For many conditions, AC is related to C by a power
law with an exponent near 0.6.56 This general description
applies to several classes of target.5-?

Whiy do contrast-increment thresholds change when ped-
estal contrast is varied? One way of dealing with this ques-
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tion is to compare an observer’s performance with ideal
performance. Recently there have been three similar treat-
ments of visual performance that have taken this ap-
proach.’0-12 A real observer’s deviation from ideal perfor-
mance is characterized by two general factors, the level of
internal noise and the efficiency with which the observer
collects the available stimulus information. For targets
added to uniform fields, the contrast thresholds of real ob-
servers greatly exceed ideal thresholds. A priori, there is no
way of knowing whether this deviation from ideal perfor-
mance is due to internal noise within the observer, to ineffi-
cient sampling of stimulus information by the observer, or to
both. However, the effects of these two factors can be evalu-
ated separately by measuring visual thresholds as a function
of the level of externally added visual noise. The following
paragraphs outline the approach in detail.

Let the luminance profile of the pedestal be L,(x, y, t) and
the luminance profile of the signal-plus-pedestal be L4 p(x,
¥,t). Wedefine the signal function S to be the difference of
the luminance profiles, normalized by the mean luminance
Lo,13

S(x, Y, t) = [Ls+p(x’ Y, t) - Lp(x1 Y, t)]/L()

The signal energy is defined to be the integral over space
and time of the squared signal function:

E= J f J S%(x, y, t)dxdydt.

If x and y are measured in degrees of arc and ¢ in seconds,
signal energy has units of (deg? sec). In several of the fig-
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ures, the units are u(deg? sec), meaning 1076 deg? sec. For
stimuli of fixed size and duration, signal energy is propor-
tional to the square of signal contrast. In the case of static
viewing, the signal function has no time dependence, and
signal energy has units of deg?.

There have been several studies in which contrast thresh-
olds were measured in the presence of visual noise. Visual
noise is composed of random luminance samples in one or
two spatial dimensions and/or time. It is characterized by
its noise spectral density N. (Details of noise spectral densi-
ty and noise bandwidth will be described in the Minnesota
Method section.) In such experiments it has been shown
that the signal energy of targets at threshold E, is related to
the noise spectral density N by a function of the form!1:15.18

E,= k(N +N,;) = kN + kN, (1)

The slope & and the intercept N,q are estimated from the
data. Larger values of either of these parameters corre-
spond to higher thresholds and hence poorer performance.
These parameters are interpreted as two qualitatively dif-
ferent ways in which detection performance can be limited;
Ngq is related to the level of internal noise and % to the
efficiency with which the observer samples the available
stimulus information.

A nonzero value of N,q indicates that the observer behaves
as if a constant, intrinsic noise is added to the external visual
noise. Ngq is called the observer’s equivalent noise. The
term “equivalent noise” is used because N is expressed in
units of noise spectral density and can be regarded as equiv-
alent to an irreducible source of noise added to the stimu-
lus.!1 The noise may be associated with the transduction
from stimulus to neural signal or may be related more direct-
ly to the decision process itself, e.g., variability of a decision
criterion.l?

The value of the constant k& in Eq. (1) relates to a second
kind of performance limitation. Anideal observer for whom
intrinsic noise is zero will achieve a detectability d’ equal to
V(E/N) for a target of signal energy E embedded in noise of
spectral density N.18 If we define an ideal observer’s thresh-
old by a criterion level of detectability d’., the relationship
between threshold signal energy E; and noise spectral densi-
ty N will be

d’.=/(E/N) or E,=(d,)?N (ideal observer). (2)

If humans were ideal, except for internal noise, the constant
k in Eq. (1) would be equal to (d’)2, as required by Eq. (2).
Measured values of k& for humans are higher than (d’.)?,
however, revealing a second kind of inefficiency in perfor-
mance. We define an observer’s sampling efficiency J by
the relation

J = (d’")Yk. 3)
Using this definition, Eq. (1) may be rewritten as
E, = [(@ )HINN + Ny)-

If we take the criterion level of detectability d’. that deter-
mines threshold to be 1, we have

E,= (/)N + N,) (threshold criterion, d’ = 1). (la)

This means that, in a graph of threshold signal energy as a
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function of noise spectral density, the higher the slope is, the
lower the sampling efficiency is.

The term “sampling efficiency” was introduced by Bur-
gess et al.!?2 and was discussed in detail by Burgess and
Barlow.19 Essentially the same concept is termed “calcula-
tion efficiency” by Pelli!! and “central efficiency” by Bar-
low.10

Values of sampling efficiency lower than 1 reflect a failure
by the observer to collect the available information optimal-
ly. The optimal strategy is one that maximizes the signal-
to-noise ratio; in other words, it is a strategy in which the
signal information is extracted while the effects of noise are
kept at a minimum. When signal parameters are known in
advance, the optimal strategy is implemented by weighting
the stimulus, in both space and time; in proportion to the
profile of the expected signal, i.e., cross correlation. If we
think of the cross correlation as the convolution of the stimu-
lus with some receptive-field profile, then a mismatch be-
tween receptive-field shape and signal shape would result in
reduced sampling efficiency. If the receptive field is larger
than the signal, all the signal information is collected, but
extra noise is also collected, and the signal-to-noise ratio is
suboptimal. If the receptive field is smaller than the signal,
some signal information is lost, and the signal-to-noise ratio
is again suboptimal. Incomplete spatial or temporal sum-
mation would also result in reduced sampling efficiencies.

Under some conditions, sampling efficiency can be very
high. Burgess et al.12 found a sampling efficiency of 70% for
low-contrast-increment detection. The target was a Gauss-
ian-windowed 2-cycle-wide 4.6-c/deg sine-wave grating. Ef-
ficiency was measured for static noise with unlimited view-
ing time. Sampling efficiency may be lower in dynamic
noise. Kersten? found a sampling efficiency of 30% for the
detection of a Gaussian-windowed 2-c/deg grating in spatial-
ly one-dimensional dynamic noise. Kersten measured effi-
ciency as a function of the grating’s width, that is, distance
between the 1/e points of the Gaussian window. The maxi-
mum efficiency occurred for gratings about 1 cycle wide,
with a rapid decrease in efficiency for gratings of greater
width. In two other studies employing dynamic noise, Ker-
sten and Barlow2.22 found that sampling efficiencies did not
exceed 30%.

The separate effects of equivalent noise and sampling
efficiency are illustrated in Fig. 1. Threshold signal energy
E, is plotted as a function of noise spectral density, both in
the same units. Threshold is defined by a criterion detect-
ability of d’ = 1. The curves represent particular cases of
Eq.(1). Theintercept on the vertical axis is signal energy at
threshold in the absence of external noise. The horizontal
intercept gives the negative of the equivalent noise, and the
reciprocal of the slope is the sampling efficiency. For an
ideal observer (dashed curve in the figure), the equivalent
noise? is zero, and the sampling efficiency is 1.0. The ideal
observer’s threshold curve is determined by the equation, E,
= N. This is the best possible performance. By compari-
son, curves A and B are not ideal. Both have nonzero equiv-
alent noise, although both have sampling efficiencies of 1.0.
Curve C has an equivalent noise of 1.0, like curve A, but a
sampling efficiency of only 0.5. Notice that the threshold
energy in the absence of noise (vertical intercept) for curves
Band Cis twice that for curve A. This threshold elevation is
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Fig. 1. Some special cases of the linear model of Eq. (1). Thresh-
old signal energy is plotted as a function of noise spectral density,
both in the same units. Threshold is defined by a criterion detect-
ability of @’ = 1. The ideal observer exhibits a sampling efficiency
of 1 and an equivalent noise of zero. Curve A has a sampling
efficiency of 1 and an equivalent noise of 1. Curve B has a sampling
efficiency of 1 and an equivalent noise of 2. Curve C has a sampling
efficiency of 0.5 and an equivalent noise of 1.

due to increased equivalent noise in the case of curve B and
to reduced sampling efficiency in the case of curve C.
Whether a change in equivalent noise or a change in sam-
pling efficiency causes the threshold elevation cannot be
determined simply by measuring thresholds in the absence
of noise. However, as Fig. 1 shows, measurements with
noise permit the distinction to be made.

Can an analysis like the one just described for contrast
detection be applied to contrast discrimination? We must
first ask whether Eq. (1) holds for the relationship between
signal energy of a just-detectable contrast increment and
noise spectral density. The work of Burgess et al.12 suggests
that it does, at least for a near-threshold pedestal. If so, we
may then ask how equivalent noise and sampling efficiency
change with pedestal contrast. Which of these factors is
primarily responsible for the dip in the contrast-discrimina-
tion function for near-threshold pedestals, and which is re-
sponsible for the rise in increment thresholds for high-con-
trast pedestals?

Pelli'! reported measurements of increment threshold
versus pedestal contrast in the absence of noise and in the
presence of two levels of external noise. He did not directly
evaluate changes in equivalent noise or sampling efficiency.
However, a rough analysis of Pelli’s data indicates that
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changes in equivalent noise play a more important role in
determining properties of the contrast-discrimination func-
tion than changes in sampling efficiency. For example,
when detection and discrimination for a near-threshold ped-
estal were compared, sampling efficiency did not change by
more than a factor of 1.5, whereas equivalent noise dropped
by a factor of 4. On the other hand, for a pedestal with
contrast 10 times threshold, sampling efficiency is still not
much changed, whereas the equivalent noise has risen by a
factor of 6. Note, however, that in a recent paper Pelli? has
used a scaling principle to argue that these same data are
consistent with invariant equivalent noise for subthreshold
pedestals.

To assess the roles of equivalent noise and sampling effi-
ciency in contrast discrimination, we measured contrast-
increment thresholds in noise for several pedestal contrasts
and noise spectral densities. Evidence cited earlier suggests
that detection performance may be less efficient in dynamic
than in static noise. It is possible that factors limiting per-
formance may be different in these two cases. We therefore
examined the effects of both forms of noise—dynamic noise
at Minnesota and static noise at UBC.

Implications of our results for models of contrast discrimi-
nation will be taken up in the Discussion.

METHOD: UNIVERSITY OF MINNESOTA

Apparatus

The patterns were produced on the face of a Joyce Electron-
ics cathode-ray-tube (CRT) display by Z-axis modulation.25
The display had a P31 phosphor, an unmodulated lumi-
nance of 340 cd/m?, and a dark surround. At the viewing
distance of 228 cm, the screen subtended 7.5° horizontally
by 4° vertically. The display was calibrated in both the
horizontal and the vertical directions with a UDT 80X
optometer with microphotometer attachment.

The signal luminance waveforms were synthesized digital-
ly by an LSI-11/23 computer. In each 10-msec frame, the
computer generated 600 pairs of voltage samples that were
routed through two 12-bit digital-to-analog converters
(DAC’s). One DAC generated the signal and the other the
pedestal. The output of each DAC was routed through a
programmable decibel attenuator so that the contrasts of
signal and pedestal could be controlled separately. The
attenuators were also used to modulate the waveforms tem-
porally. The attenuated waveforms were added and then
multiplied by the output of a third DAC that served to
modulate the patterns along the raster lines of the CRT.
The third DAC was triggered by the raster synchronization
pulse and produced 160 samples per raster line. The result-
ing waveform was then added to the noise.

The noise varied in time and two spatial dimensions. Bi-
nary pseudorandom noise was digitally synthesized by a 31-
bit shift register with exclusive-or feedback:26 at a sample
rate of 5 MHz. The noise voltage was passed through a
high-bandwidth passive attenuator to set the noise level.

Stimuli
The luminance at a point x, y (in degrees relative to the
fixation mark) at time ¢ (milliseconds) is given by
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L(x,y,t) = Lo[1 + m(x, y, t)q(x)],
where L is the mean luminance. The term ¢(x) is given by
q(x) = C cos(27fx)
for the pedestal and by
q(x) = (C + AC)cos(27fx)

for the signal-plus-pedestal, where C and AC are the Michel-
son contrasts of the pedestal and signal. The spatial fre-
quency f was always 2 ¢/deg. The modulating function m(x,
y, t) is given by the product of Gaussian functions horizon-
tally, vertically, and temporally:

m(x, y, t) = exp[—(x/s,)” — (v/s,)* = (t/s,)’],

where s, sy, and s; are the horizontal, vertical, and temporal
space constants, respectively. The horizontal and vertical
space constants were 0.5°. The time constant was 80 msec.

For Gaussian noise, the amplitudes of the samples have a
Gaussian distribution. The bandwidth of the noise is deter-
mined by the spatial and temporal extents of the samples
and the correlations, if any, between samples. In our experi-
ments, the noise samples were uncorrelated. The two-sided
noise spectral density N is defined to be the variance of the
sampling distribution divided by the two-sided bandwidth,
i.e., twice the one-sided bandwidth. Pelli!l has pointed out
that two-sided noise spectral densities are notationally con-
venient. Using the two-sided definition, the expression dis-
cussed in the Introduction for ideal detectability, d’ = {(E/
N), is independent of the dimensionality of the noise. Us-
ing a one-sided definition, a more awkward expression re-
sults, d’ = (28E/N), where the noise is k£ dimensional. In
this paper, “noise spectral density” refers to “two-sided
noise spectral density.” When the noise has one temporal
and two spatial dimensions, the units are 1/[(c/deg)?Hz] =
deg? sec. Accordingly, the units of noise spectral density
and signal energy are the same.

The horizontal, vertical, and temporal dimensions of the
uncorrelated noise samples were 0.0085 deg, 0.083 deg, and
0.01 sec, respectively.2” The noise was turned on abruptly
160 msec before the maximum contrast was reached and
turned off abruptly 160 msec later. The noise filled the
screen both horizontally and vertically.

For each of the three pedestal contrasts—O0, 0.01, and
0.25—increment thresholds were measured for four noise
spectral densities. Noise spectral densities were computed
by multiplying the squared rms noise contrast by the prod-
uct of the sample sizes in the x, y, and ¢ directions.2? The
relation between noise spectral density N and rms noise
contrast C is N = 7.06 X 1076 C,;,s% deg? sec.

Procedures
Contrast-increment thresholds were obtained by using a
two-alternative forced-choice version of the method of con-
stant stimuli. For each pedestal contrast, three increment
contrasts were used. Within each trial, one of these was
chosen at random and added to the pedestal in one of the
intervals. The intervals were separated by 600 msec, and
each was marked by an auditory tone. A feedback tone
indicated to the observer whether he or she was right.

Each of the resulting psychometric functions was based on
300 trials. Four of these functions were collected in one
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session, one for each of the four noise levels. These mea-
surements were repeated in four successive sessions. In
alternate sessions the noise levels were employed in ascend-
ing and descending order.

The raw data consisted of the number of trials and per-
centages correct for each of a set of three increment con-
trasts added to a given pedestal. Percentages were trans-
formed to detectability d’.3% The data were then fitted by
functions of the form

d’ = (C/C') 4)

C’ is the contrast for which d’ = 1 and is taken to be the
threshold contrast. (It corresponds to the contrast associat-
ed with about 76% correct in forced choice.) n is a parame-
ter representing the steepness of the psychometric function.
Maximum-likelihood estimates were found for the parame-
ters C’ and n. Separate estimates of C’ and n were obtained
for each of the four repetitions of each psychometric func-
tion for each condition.

There were two observers, DR and MK, both naive about
the details of the experiment. Subject DR is an emmetrope
and subject MK a corrected myope. Viewing was binocular
with natural pupils and with a fixation point at the center of
the screen.

METHOD: UNIVERSITY OF BRITISH
COLUMBIA

Apparatus

Patterns were produced on the face of a Tektronix 634
monochrome TV monitor. The monitor had a white P4
phosphor with unmodulated luminance of 150 ¢d/m2 and a
dark surround. At the viewing distance of 143 cm, the
display subtended 3.6° horizontally by 4.5° vertically. Cali-
brations were conducted with a Tektronix J16 photometer
and J6523 telephotometer attachment.

The patterns were created digitally by a PDP-11/34 com-
puter and loaded into a Ramtek 9100 display system. The
Ramtek generated a 256 (vertical) X 320 (horizontal) pixel
display quantized to 256 gray levels per pixel. The nonlin-
ear relation between monitor luminance and signal voltage
was canceled by an inverse transformation loaded into a
lookup table on the Ramtek’s video output board. The
pedestal and pedestal-plus-increment were created as inde-
pendent digital images. The static, two-dimensional noise
was generated off line by the UBC Computer Center’s ran-
dom-number generator and added to these digital images.
The noise had a Gaussian probability density function, and
the samples were uncorrelated. When required, the result-
ing digital waveforms were loaded into the Ramtek’s memo-
ry for subsequent display.

Stimuli

The targets were disks of uniform luminance superimposed
upon the 150-cd/m?2 background. The disks subtended 13.6
arcmin. (Actually, the targets were not exactly circular be-
cause of the discrete size of the individual pixels. However,
the targets had a diameter of 16 pixels and were nearly
circular.) The pedestal and pedestal-plus-increment were
presented on the left- and the right-hand sides of the display
in a spatial forced-choice paradigm. The pedestal had con-
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Fig. 2. Tllustrative psychometric functions. Detectability (left-
hand ordinate) and percent correct (right-hand ordinate) are plot-
ted as a function of increment contrast for fixed values of pedestal
contrast and noise spectral density. A, Dynamic noise (Minnesota):
the four symbols show replications in four separate sessions for one
observer. Each point is based on about 100 trials. B, Static noise
(UBC): the two symbols show psychometric functions for two ob-
servers under identical conditions.

trast C and pedestal-plus-increment C + AC. Here, con-
trast is defined to be AL/Lg, where L¢ is the background
luminance and AL is the change of luminance associated
with the target.

Static noise was restricted to square patches, centered on
the target disks, but of twice the diamieter, ie., 32 X 32
pixels. The two-sided vertical and horizontal bandwidths of
the static noise were 74 ¢/deg. The targets and noise were
turned on abruptly together and left on until the observer
made a decision. For each of the five pedestal contrasts—
0.053,0.107, 0.21, 0.32, and 0.43—increment thresholds were
obtained for five noise spectral densities—0, 0.203, 0.812,
1.83, and 8.25 u(deg?).3!

Procedure

For a given pedestal contrast and noise spectral density, a
fixed contrast increment was selected. A spatial two-alter-
native forced-choice procedure was used. In a trial, the
pedestal was presented on one side of the screen, and the
pedestal-plus-increment on the other, both embedded in
noise. The observer was required to indicate on which side
of the screen the increment was presented. The observer
was free to look back and forth. Feedback was given about
the outcome of the trial. Percent correct was obtained from
a block of 400 such trials. Percent correct was converted to
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detectability d’.3° Assuming a linear relationship between
d’ and increment contrast (see Fig. 2B), the value of incre-
ment contrast for which d’ = 1 was calculated. This value
was taken as the threshold increment contrast.

Two well-practiced but naive observers participated.
Viewing was binocular with natural pupils.

RESULTS: UNIVERSITY OF MINNESOTA

The Minnesota results refer to discrimination of 2-c/deg
sine-wave targets with Gaussian envelopes in space and
time. Measurements were conducted in two-dimensional
dynamic noise.

Figure 2A shows the four psychometric functions collected
from subject DR for a pedestal contrast of 0.25 and noise
spectral density of 0.8 u(deg? sec). Detectability d’ is plot-
ted against increment contrast on a log-log scale. Corre-
sponding values of percent correct are shown on the right-
hand ordinate. The different symbols represent data col-
lected in different sessions. Each set of data is based on
approximately 300 trials. Thresholds and slopes were esti-
mated from each set of data (see the Minnesota Method
section). The threshold was the increment contrast for
which d’ = 1. Mean thresholds and slopes were then com-
puted for the four sets of data. The same approach was used
to estimate thresholds and slopes for all conditions.

As an aside, we consider the log—log slopes of the psycho-
metric functions. These slopes have significance for models
of detection and discrimination. Table 1 lists slopes for two
observers, three pedestal contrasts, and four noise spectral
densities. In all, the 24 estimates are based on 96 separate
psychometric functions. According to the table, the slopes
tend to be larger than 1 when the pedestal is low and the
noise level is low. For example, for simple detection in the
absence of noise, the slopes are slightly greater than 2. This
result is consistent with previous findings (see, e.g., Foley
and Legge?). However, for high noise or suprathreshold
pedestals, the slopes cluster near 1. Kersten? found slopes
near 1 for detection of 2-c/deg gratings in one-dimensional
dynamic noise.

The analysis summarized by Eq. (1) and illustrated in Fig.
1 requires a linear relationship between threshold signal

Table 1. Mean Slopes of Psychometric Functions
(Minnesota Data)®

Pedestal Noise Spectral Subject Subject
Contrast Density [1(deg? sec)] DR MK
0 0 2.06 2.13
0.177 1.20 1.54
0.8 149 1.04
4.43 1.00 1.18
0.01 0 1.50 1.38
0.011 1.28 1.56
0.044 1.29 1.54
0.177 1.12 0.86
0.25 ' 0 111 0.95
0.177 0.93 1.04
0.8 0.97 1.00
4.43 1.01 0.71

@ The psychometric data were fitted by functions of the form d’ = (C/C")".
This table contains estimated values of n. Each estimate is the mean of four
values, each obtained from a psychometric function.
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Fig. 3. Threshold signal energy as a function of noise spectral density in dynamic noise (Minnesota). The main graph compares data for
pedestals having contrasts of zero and 0.25. The inset shows data for the 0.01-contrast pedestal and some of the data for the zero-contrast
pedestal replotted from the main graph. Best-fitting straight lines (least-squares criterion) have been fitted to the three sets of data. The
dashed line with slope 1.0 shows the performance of an ideal observer having a sampling efficiency of 1.0 and equivalent noise of zero. The re-
lation between signal energy E and contrast C is E = 0.0192C2 deg? sec. Accordingly, the 0.01- and 0.25-contrast pedestals have energies of
1.92 and 1200 u(deg? sec), respectively. u(deg?sec) means 10-6 deg2sec. A and B show data for two observers.

energy and noise spectral density, apart from the additive
constant associated with equivalent noise. We began by
asking whether a linear relationship provided a good fit to
our discrimination data. For each pedestal, we tested the
hypothesis that nonlinear terms would provide a significant-
ly better fit than a linear regression (see Hays,33 Sec. 16.4).
In no case did the F test show a significant result, p < 0.05.
We therefore conclude that the linear model [Eq. (1)] de-
scribes not only contrast detection but also contrast dis-
crimination in noise. We can therefore examine the effects
of pedestal contrast on the intercept and slope parameters,
i.e., on equivalent noise and sampling efficiency.

In Fig. 3, mean threshold data are plotted for the two
observers in the format of Fig. 1. The abscissa is noise
spectral density, and the ordinate is threshold signal energy,
both in units of u(deg? sec). The dashed line with slope 1.0
in each panel represents the performance of an ideal observ-
er. The three sets of data correspond to the three pedestals.
Each data point is the mean of four threshold estimates,
each obtained from a 300-trial psychometric function.
Best-fitting straight lines have been drawn through each set
of data. Because the data for the 0.01-contrast pedestal
were collected over a narrower range of spectral densities,
they are presented at increased scale in the insets.

Recall from the Introduction that, for targets of fixed size
and duration, signal energy is proportional to squared con-
trast. For the Minnesota data, the conversion relation is £
= 0.0192C? deg? sec. Using this conversion, the 0.01-con-

trast and 0.25-contrast pedestals have energies of 1.92 and
1200 p(deg? sec), respectively. We can use the relation in
reverse to convert threshold energies in Fig. 3 to threshold
contrasts. For example, the no-noise, no-pedestal threshold
energies for subjects DR and MK are 2.73 and 2.45 u(deg?
sec), respectively. These values convert to corresponding
threshold contrasts of 0.0119 and 0.0113, respectively.

The results of the two observers are similar. First consid-
er data points for zero noise spectral density. Thresholds
for the 0.01-contrast pedestal lie below those for the zero-
contrast pedestal (see insets). This is the facilitation effect
in which near-threshold contrast discrimination is better
than detection.! The corresponding threshold for the 0.25-
contrast pedestal is much higher, representing the growth of
increment threshold with suprathreshold pedestal contrast.
It is interesting to compare our threshold signal energies
with those measured by Watson et al.3* They set out to find
the target that could be detected with least signal energy
(they used the term “contrast energy”). They found that a
7-c/deg sine wave drifting at 4 Hz, with Gaussian widths of 3
cycles in both the vertical and the horizontal directions and a
duration of 160 msec, could be detected when its signal
energy was about 1 u(deg? sec). This is the target that “the
eye sees best.” 3 As computed in the previous paragraphs,
in the absence of a pedestal our target required about 2.5
times more energy to be detected. However, when superim-
posed upon the 0.01-contrast pedestal, the threshold signal
energy was about 0.7 u(deg? sec), equivalent to or lower than
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the signal energy in the stimulus of Watson et al. In an
unpublished study, Kersten and Barlow?” measured a sub-
stantially lower threshold energy [approximately 0.1 pu(deg?
sec)] with a near-threshold pedestal added to the optimal
stimulus found by Watson et al.

Recall that sampling efficiency is just the reciprocal of the
slope k in Eq. (1). Notice that the slopes are about equal for
the zero- and 0.01-contrast pedestals and for the two observ-
ers. However, the slope is about a factor of 2 lower for the
0.25-contrast pedestal for both observers. The drop in slope
k implies an increase in sampling efficiency for discrimina-
tion at 0.25 contrast. The sampling efficiencies of both
observers are plotted in Fig. 5A below. They are roughly 4%
for detection and near-threshold discrimination and about
8% for suprathreshold contrast discrimination. (An effi-
ciency of 8% means that, in high levels of noise, our obser-
vers’ threshold signal energies were about 12 times greater
than the ideal observer’s threshold energy. This corre-
sponds to threshold contrast about 3.5 times higher than the
ideal.)

From Eq. (1), it can be seen that the intercept on the
ordinate is equal to the product of & and N Therefore
estimates of N, can be obtained by dividing the intercept by
k. Values of N, are plotted in Fig. 5B. For the 0.01-
contrast pedestal, values of N, have dropped by factors of
4.4 and 7.7 for subjects MK and DR, respectively. For the
same condition, values of sampling efficiency have deviated
by no more than 20% from those found for the zero-contrast
pedestal. From these results, we conclude that the facilita-
tion effect associated with near-threshold discrimination is
due to a reduction in the observer’s equivalent noise. On
the other hand, for the 0.25-contrast pedestal, Nq has risen
by factors of 11.8 and 4.7 for subjects MK and DR, respec-
tively, relative to values for the zero-contrast pedestal. At
the same time, sampling efficiency has increased by a factor
of about 2 for both observers. We may conclude that the
growth of the increment threshold (intercept in Fig. 3) for
suprathreshold pedestal contrasts is due to an increase in
equivalent noise. Were it not for the small increase in sam-
pling efficiency, the growth of equivalent noise would result
in even larger increment thresholds. In short, the results of
Fig. 3 indicate that the major features of the contrast-dis-
crimination function can be traced to changes in the obser-
ver’s equivalent noise.

Aninteresting aspect of the data in Fig. 3 is that the curves
for zero- and 0.25-contrast pedestals cross. This means
that, for high noise levels, observers can detect a smaller
contrast increment superimposed upon a 0.25-contrast ped-
estal than upon a uniform background.

RESULTS: UNIVERSITY OF BRITISH
COLUMBIA

The UBC results refer to contrast discrimination for 13.6-
arcmin disks. Measurements were conducted with two-di-
mensional static noise. For the UBC data, the conversion
relation between signal energy and contrast is E = 0.0403C?
deg?.

Figure 2B shows psychometric functions for two observers
at a pedestal contrast of 0.053 and noise spectral density of
3.25 u(deg?). Each set of data is based on approximately 400
trials. Best-fitting straight lines (least-squares criterion)
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through the two sets of data have slopes of 1.12 (subject ML)
and 1.00 (subject BW). A slope near 1.0 in log-log coordi-
nates implies a linear relationship between d’ and increment
contrast. The threshold is defined as the increment con-
trast for which d’ = 1. In most cases, entire psychometric
functions were not measured. Instead, percent correct (and
hence d’) was obtained for a single increment contrast. An
assumed linear relationship between d’ and increment con-
trast was then used to estimate the threshold. Linearity of
psychometric functions for contrast discrimination in the
presence or absence of static noise has been verified in nu-
merous unpublished studies by A. E. Burgess. The example
shown in Fig. 2B is for the lowest pedestal used in the UBC
experiments. The Minnesota data in Table 1 indicate that
as pedestal contrast or noise level increases, psychometric
function slopes decrease to values near 1 and thereafter
remain constant. None of the UBC data were collected for
pedestal or noise levels in which nonlinear psychometric
functions would be expected.

Figure 4 has the same format as Fig. 3. The two panels
show data for observers BW and ML. Each point is based

on 400 spatial forced-choice trials. Once again, the dashed
curve with slope 1.0 shows the performance of an ideal ob-
server. The five sets of data are for the five suprathreshold
pedestal contrasts that ranged from 0.053 to 0.43. Lines
were fitted to each set of data.

The leftmost data point in each set represents the incre-
ment threshold in the absence of noise. As expected, these
values increase with increasing pedestal contrast. In fact, if
the increment contrast is plotted as a function of pedestal
contrast in log-log coordinates, the best-fitting straight lines
through the data have slopes of 0.58 and 0.74 for subjets ML
and BW, respectively. This reflects existence of a power-
law relation® between AC and C, in agreement with the
findings of Legge® and Legge and Kersten.b

In each panel of Fig. 4, the sets of lines have very similar
slopes. The corresponding sampling efficiencies for hoth
observers are plotted in Fig. 5C. On the whole, subject ML’s
sampling efficiencies are about 1.4 times greater than sub-
ject BW’s, roughly 14% compared with 10%. For hoth sub-
jects, sampling efficiency remained relatively constant over
the range of suprathreshold pedestals studied.
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Values of N4 can again be estimated by dividing the
intercept on the ordinate by the corresponding value of k.
These values are plotted in Fig. 5D. For both observers, Neg
rises monotonically with pedestal contrast. For subject
BW, N, changes by a factor of about 32, wheréas for subject
ML, N, changes by a factor of only about 5.5. In less
complete data for observer AB, not shown, N, increased by
a factor of about 15 over the same range of contrasts. De-
spite these individual differences, it is clear that equivalent
noise rises with pedestal contrast over the range examined.

In short, the UBC data reveal that, over the range of
suprathreshold contrasts studied, sampling efficiency re-
mains relatively constant, but equivalent noise rises with
contrast. We therefore conclude that the growth of incre-
ment thresholds with suprathreshold pedestal contrast re-
flects the growth in the observer’s equivalent noise.

DISCUSSION

Comparison of Findings in Static and Dynamic Noise

The tesults of experiments with static (UBC) and dynamic
(Minnesota) noise have several common features. For both,
a linear equation describes the relation between threshold
sighal energy and noise spectral density for contrast detec-
tion and discrimination. The two parameters of the linear
equation are closely related to sampling efficiency and
equivalent noise. Equivalent noise changes much more
with pedestal contrast than sampling efficiency and there-
fore plays a greater role in determining the shape of the
contrast-discrimination function. In dynamic noise, sam-
pling efficiencies increased by only about a factor of 2 from
no pedestal to a 0.25-contrast pedestal, whereas equivalent-
noise spectral densities increased by factors of 5.2 and 11.9
for two subjects over the same range. In static noise, sam-
pling efficiency showed no systematic variation across a log
unit of suprathreshold pedestal contrast, whereas equiva-
lent noise rose steadily in rough proportionality to pedestal
contrast (Fig. 5D).

For suprathreshold pedestal contrasts, sampling efficien-
cies averaged 12 and 8% in static and dynamic noise, respec-
tively. 'This near agreement may be somewhat fortuitous.
It is likely that the Gaussian-windowed sine-wave signals
used in the dynamic-noise experiments were more optimally
matched to underlying detectors than were the disk signals
used in the static-noise experiments. Had more nearly opti-
mal stimuli been used in the latter, the static-noise sampling
efficiencies would probably have been higher (cf. Burgess et
al.l2), Our results, therefore, do not conflict with the view
that sampling efficiencies are higher in static than in dynam-
ic noise.

The values of equivalent noise estimated in the static- and
dynamic-noise experiments have different units and cannot
therefore be directly compared. However, we briefly digress
to compare the values of equivalent noise in the dynamic
experiments with values to be expected if the photon flux
were the only intrinsic source of noise. The retinal illumi-
nance corresponding to 340 cd/m? and a measured pupil
diameter of 5 mm is 6675 Td. Since one troland corresponds
t01.25 X 106 photons per deg2sec at 555 nm, the total photon
flug, for two eyes, was 1.67 X 1010 photons per deg?sec. The
reciprocal of the photon flux is the noise spectral density,
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and, in this case, it is equal to 5.99 X 107 u(deg? sec). By
comparison, subject MK’s measured value of equivalent
noise for detection with no pedestal was 0.135 u(deg? sec).
The ratio of photon-noise spectral density to subject MK’s
equivalent-noise spectral density is 4.44 X 10~%. Pelli'! has
termed suchi a ratio the observer’s “transduction efficiency.”
Pelli has shown that quantum efficiency is the product of
transduction efficiency and sampling efficiency. Since sub-
ject MK’s sampling efficiency is 4% for detection, her quan-
tum efficiency is 0.0017%.

Implications for Models of Contrast Discrimination

Two aspects of the contrast-discrimination function have
attracted theoretical interest—the facilitation effect and the
growth of increment threshold with suprathreshold pedestal
contrast. We treat these separately.

Facilitation Effect

Why does threshold increment contrast decrease as pedestal
contrast increases from zero? For theoretical analyses, see
papers by Foley and Legge,* Wilson,8 Lasley and Cohn,? and
Pelli.2¢ Of the models to be reviewed, only the threshold-
transducer model accounts for the data of this paper.

A leading theoretical candidate is the signal-uncertainty
model, one version of which has been described in detail by
Pelli.24 According to this model, an observer monitors the
output of M linear, independent noisy detectors, only one of
which (or possibly several of which) is responsive to a given
signal. All M detectors, however, are assumed to be equally
responsive to white noise. In a two-alternative forced-
choice (2AFC) trial, the observer adopts a maximum-of-
decision rule; he chooses the altéernative in which he finds the ,
detector yielding the largest output.® When such an ob-
server attempts to detect a signal in the absence of a pedes-
tal, noise in the nonsignal channels causes the threshold to
rise relative to an ideal observer, who ignores the noise from
the nonsignal channels. In the terminology of this paper,
the signal-uncertain observer is oversampling; he gathers
information from an inappropriately large set of detectors.
Equations governing the behavior of this model for detection
have been presented by Nolte and Jaarsma‘l and by
Pelli.112¢ Pelli has also presented an equation and a graph
describing performance of the model for discrimination.

How does the uncertainty model behave for contrast dis-
crimination? Because the pedestal and increment are iden-
tical except for amplitude, both stimulate the signal-sensi-
tive detector. In the 2AFC procedure, the observer once
again monitors all M detectors in both alternatives and se-
lects the alternative in which he finds the detector having
maximum response. The model exhibits different behavior,
depending on whether the pedestal itself is subthreshold or
suprathreshold. By definition, when the pedestal is sub-
threshold, its detectability is low. This means that its pres-
ence does not much increase the odds that the signal-sensi-
tive detector will carry the maximum response. The situa-
tion remains much like detection in which the noise from the
M — 1 nonsignal detectors reduces efficiency. On the other
hand, when the pedestal is suprathreshold, its detectability
is high. This means that its presence will usually guarantee
that the maximum response will arise from the signal-sensi-
tive detector. As a consequence, the effect of uncertainty
diminishes, even though the observer continues to monitor



400  J. Opt. Soc. Am. A/Vol. 4, No. 2/February 1987

PREDICTIONS OF THE UNCERTAINTY MODEL FOR
CONTRAST DISCRIMINATION IN NOISE

SUBTHRESHOLD REGION SUPRATHRESHOLD REGION

Sampling efficiency and equivalent
noise are nearly the same as for
detection.

Sampling efficiency is close to 1.0.
Equivalent noise is the same as for
detection.

L _ |
0 1.0
PEDESTAL DETECTABILITY, d'

Fig.6. Summary of the properties of the signal-uncertainty model
for discrimination in noise. The model’s behavior depends on the
detectability d’ of the pedestal. For details, see the text.

2

all M detectors. When the pedestal acts in this way to
reduce the effect of uncertainty, the increment threshold is
lower. This is the model’s explanation for the facilitation
effect. When the pedestal contrast is high enough so that
the forced-choice decision is always based on the output of
the signal-sensitive channel, the increment threshold drops
to the value achieved by an ideal observer, who monitors
only the signal-sensitive detector. In short, a suprathres-
hold pedestal causes a signal-uncertain observer to perform
as well as the M = 1 ideal observer.

The analysis is the same when external noise is added,
except that the subthreshold and suprathreshold domains of
behavior are defined by the detectability of the pedestal in
the external noise. If the range of noise levels is low enough
so that the pedestal remains well above threshold, the mo-
del’s discrimination behavior is nearly ideal, and the sam-
pling efficiency is close to 1. If the external noise levels are
so high that the pedestal has extremely low detectability, the
model’s discrimination behavior is much like its detection
behavior, so sampling efficiency is lower. In these two do-
mains, linear equations provide good descriptions of perfor-
mance. The two types of behavior can be modeled by curves
A and Cin Fig. 1. For both, the estimated value of equiva-
lent noise is the same (X-axis intercept). When the pedes-
tal is suprathreshold, the slope is unity (curve A), corre-
sponding to a sampling efficiency of 1. When the pedestal is
subthreshold, the slope is higher (curve C), corresponding to
a lower sampling efficiency. This illustrates that a single
decision rule can exhibit different sampling efficiencies, de-
pending on its domain of application. Finally, if a set of
noise levels covers a range in which the pedestal is sometimes
subthreshold and sometimes suprathreshold, hybrid perfor-
mance will result. For low noise levels, the data will lie along
curve A; for high noise levels, along curve C. The transition
occurs when the noise levels are such that the pedestal has
detectability d’near 1. Taken asa whole, the hybrid curve is
nonlinear. Straight-line fits across the transitional region
would provide spuriously low estimates of both sampling
efficiency and equivalent noise. Figure 6 summarizes the
uncertainty model’s discrimination behavior. If the pedes-
tal itself is suprathreshold, d’ > 1, then discrimination per-
formance is nearly ideal. If the pedestal is subthreshold, d’
<1, discrimination is much like detection,

The uncertainty model predicts that sampling efficiency
should be higher for data collected with suprathreshold ped-
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estals than for data collected with subthreshold pedestals.
To test this prediction for a given pedestal would require a
range of noise levels great enough so that the pedestal itself
was sometimes subthreshold and sometimes suprathre-
shold. Unfortunately, none of our data sets was of this type.
Our near-threshold pedestal had a contrast of 0.01, and
subjects DR and MK had detection thresholds of 0.0113 and
0.0119, respectively. This means that the detectability of
the pedestal, in the absence of external noise, was already
lower than 1. (In fact, we may use the slopes of the psycho-
metric functions listed in the top row of Table 1 to estimate
that the pedestal had detectabilities of 0.70 and 0.77 for
subjects DR and MK, respectively.) Addition of external
noise would lower the d’ values still further. These condi-
tions are appropriate for the subthreshold region in Fig. 6.
On the other hand, our higher-contrast pedestals were all
confined to the suprathreshold region in Fig. 6.

We conducted a supplementary experiment to test the
uncertainty model. Apparatus, procedures, and stimulus
waveforms were the same as described in the Minnesota
Method section. Subject MK participated in the supple-
mentary experiment that was conducted two years after the
original experiments. Contrast discrimination was mea-
sured for a 0.024-contrast pedestal. Preliminary measure-
ments indicated that this target by itself had detectability of
1 when the noise spectral density was 0.177 u(deg? sec).
Using this pedestal, we measured subject MK’s contrast-
increment thresholds for noise levels lower than 0.177 (su-
prathreshold region) and for noise levels greater than 0.177
(subthreshold region). The results are shown in the two
panels of Fig. 7. Data for the subthreshold pedestal are
shown in Fig. 7A and for the suprathreshold pedestal in Fig.
7B. The uncertainty model predicts that the slope of the
best-fitting straight line will be greater in Fig. 7A than in Fig.
7B. Indeed, the slope is slightly higher for the subthreshold
pedestal, but not significantly so—23.2 + 3.98, compared
with 15.6 + 5.21. These data do not provide evidence for a
major change in slope. Recall that sampling efficiency is the
reciprocal of these slopes. The values are 4.3% (subthresh-
old pedestal) and 6.4% (suprathreshold pedestal), similar to
the earlier estimates for subject MK (Fig. 5A). These data
do not confirm the uncertainty model’s prediction that the
sampling efficiency should be higher for contrast discrimi-
nation when the pedestal is suprathreshold than when it is
subthreshold. _

Our data pose an additional problem for the uncertainty
model. The model predicts that the slopes of detection
psychometric functions should be the same in the presence
or absence of external noise. As Table 1 shows, we found
lower slopes for detection in noise than for detection in the
absence of noise.

In summary, our results do not appear to support an inter-
pretation of the facilitation effect based on signal uncertain-
ty. Itshould be noted, however, that a more thorough quan-
titative test of the model awaits specific proposals for the
value of M and for the range of conditions over which the
model applies.

Legge?? has shown that an energy-detector model can ac-
count for several aspects of contrast detection and discrimi-
nation, including the facilitation effect. According to this
model, intrinsic Gaussian noise is added to the signal, band-
pass filtered, squared, and integrated. (At suprathreshold
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Fig. 7. Threshold signal energy as a function of noise spectral
density in dynamic noise (Minnesota). In these experiments, the
pedestal had a contrast of 0.024 with corresponding signal energy of
11 u(deg?sec). For observer MK, its detectability d’ is 1 for a noise
spectral density of 0.177 u(deg? sec). Panel A shows threshold
signal energy for contrast increments when noise levels are higher
than this, and panel B shows that for lower noise levels. Each point
is the mean of four threshold estimates, each based on a 300-trial
psychometric function. Best-fitting straight lines (least-squares
criterion) have been fitted to the data.

contrasts, a compressive nonlinearity also plays a role. See
the next subsection.) The type of square-law summation
inherent in this model is nonideal when it comes to the
detection of known signals. Accordingly, the sampling effi-
ciency of the energy detector decreases with the spatiotem-
poral extent of the signal, as characterized by the number M
of spatial and temporal samples required to represent it.
We studied the properties of this model for contrast detec-
tion and discrimination in noise. The results can be sum-
marized by saying that the energy detector behaves qualita-
tively like the signal-uncertainty model. Once again, the
model behaves differently for subthreshold and suprathre-
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shold pedestals, with higher sampling efficiency in the latter.
The empirical arguments marshalled against the signal-un-
certainty model once again apply. Therefore our results do
not support an interpretation of the facilitation effect based
on the energy detector.

Laming?3 has developed a comprehensive model of senso-
ry processing that includes contrast detection and discrimi-
nation. The only source of noise in the model is the photon
flux. Because of its Poisson nature, the mean and the vari-
ance of the flux are both proportional to luminance. There
is a stage of exact differential coupling at the input. It
transforms the photon flux to a source of noise (approxi-
mately Gaussian in form at photopic levels), with zero mean
and variance proportional to luminance. Subsequently,
there is a stage of half-wave rectification followed by integra-
tion. For small signals, the output is an accelerating func-
tion of input amplitude. This property accounts for the
form of the detection psychometric function and for the
facilitation effect. According to this model, presentation of
zero-mean, constant-variance, Gaussian white noise before
the stage of differential coupling is equivalent to the addi-
tion of a uniform veiling luminance. We can predict the
effects of a veiling luminance on contrast detection as fol-
lows. At moderate and high levels of illumination, Weber’s
law applies, and contrast-detection thresholds are indepen-
dent of background luminance L,. Addition of a veiling
luminance L, would result in an apparent increase in thresh-
old by a factor of 1 + (L,/L¢) and an increase in threshold
signal energy by a factor of [1 + (L,/L¢)]2. According to
Laming’s model, noise spectral density N is equivalent to
veiling luminance L,, so we should expect a quadratic rela-
tion between threshold signal energy and N. This predic-
tion disagrees with the present study and with a variety of
other studies that have shown a linear relation and.not a
quadratic one. A similar analysis indicates that the relation
between squared increment contrast and veiling luminance
is also nonlinear, implying that Laming’s model predicts a
nonlinear relation between threshold signal energy and
noise spectral density. This again is inconsistent with our
data. "

Foley and Legge* studied the form of psychometric func-
tions for contrast detection and near-threshold discrimina-
tion. They proposed a threshold-transducer model to ac-
count for their data. According to their model, a response
proportional to stimulus amplitude is perturbed by a source
of peripheral noise (possibly quantal in origin) and is then
subjected to a thresholding operation. If the response ex-
ceeds a threshold value 7', it is unaffected. If the response is
less than T, it is set to zero. The level of T is set so that
fluctuations of the peripheral-noise source rarely exceed it in
the absence of a signal. Following the thresholding opera-
tion, the response is perturbed by a central source of noise
that is independent of the peripheral source. Unlike the
signal-uncertainty and energy-detector models, the thresh-
old-transducer model contains just one channel. Its perfor-
mance is determined in large part by the central noise that
follows the nonlinearity.

We used a Monte Carlo simulation to study the properties
of the threshold-transducer model for detection and dis-
crimination in noise. To do so, it was necessary to assign
values to the threshold 7, the peripheral-noise standard
deviation, and the central-noise standard deviation. A lim-
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ited search of the parameter space revealed that values of
3.0, 1.0, and 1.25, respectively, provided satisfactory results.
For a given pedestal and noise level, threshold contrast was
estimated from a simulated psychometric function com-
posed of four to six noise levels and 500 trials per level.
Threshold signal energy was computed from squared thresh-
old contrast and plotted as a function of noise spectral densi-
ty. The simulation produced the following results. (1) The
detection psychometric function had the form d’ proportion-
al to C27. (2) The increment threshold for a near-threshold
pedestal was about a factor of 2 lower than the detection
threshold. (3) For both detection and discrimination,
threshold signal energy was linearly related to noise spectral
density. (4) In high noise, psychometric functions for detec-
tion and discrimination were both approximately linear,
that is, d’ proportional to C. (5) Relative to detection, the
sampling efficiency for near-threshold discrimination,
changed by no more than 12%, whereas the equivalent noise
dropped by a factor of 4. All these properties are consistent
with the data presented in this paper and with the relevant
data of Foley and Legge.*

Of the models considered here for detection and near-
threshold discrimination, only the threshold-transducer
model is consistent with our data.

Suprathreshold Contrast Discrimination

Several models have been proposed to account for the su-
prathreshold behavior of contrast discrimination.38942:44
These models account for the growth of the increment
threshold in one of two ways. Either there is a compressive
transformation of internal response followed by the addition
of a constant-variance noise or there is a linear response to
which is added signal-dependent (multiplicative) noise.
The.form of the compressive nonlinearity or the relation
between signal strength and noise variance is manipulated
to account for discrimination data. There exists electro-
physiological evidence for signal-dependent noise. Tol-
hurst et al.45 measured the mean and the standard deviation
of the number of spikes elicited by passage of 1 cycle of a
drifting grating through the receptive fields of 20 cat simple
and complex cells. Over a range of contrasts between
threshold and saturation, the standard deviation increased
as a power function of the mean with exponent in the range
0.5-0.7.

It would be nice if our noise experiments could distinguish
between these two types of models. Unfortunately, they
cannot. In fact, as is shown in Appendix A, it is unlikely
that psychophysical discrimination experiments can distin-
guish between the two alternatives. Both types of model
predict that sampling efficiency remains constant as pedes-
tal contrast rises but that equivalent noise increases. This
prediction is fully consistent with our static-noise data (Fig.
4). Our dynamic-noise data (Fig. 3) show an increase by a
factor of 2 in sampling efficiency from near-threshold to
suprathreshold pedestals. The reason for this change in
sampling efficiency is not known.

Whereas our noise results were inconsistent with most
models of near-threshold contrast coding, they tend to sup-
port the prevailing view of suprathreshold contrast discrimi-
nation.

Models such as those just described for suprathreshold
contrast discrimination have also been used to account for
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Weber’s law for luminance discrimination. Such models
would predict that sampling efficiency remains constant and
equivalent noise grows as luminance increases. However,
Pelli‘ has analyzed data showing that sampling efficiency
must drop dramatically as luminance increases. Pelli’s
analysis implies that the Weber’s law for luminance dis-
crimination results not from nonlinear compression or sig-
nal-dependent noise but from decreasing sampling efficien-
cy.

In summary, our experimental results appear to be incon-
sistent with most models of contrast coding near the detec-
tion threshold. Our data do not support Pelli’s24 uncertain-
ty model, Legge’s*? energy detection model, or Laming’s?
rectifier—integrator model. They do support Foley and Leg-
ge’s* threshold-transducer model. Our suprathreshold dis-
crimination results are, in general, consistent with existing
models. Our suprathreshold data indicate that the growth
of the contrast-increment threshold is due to the growth of
equivalent noise, not to a decrease in sampling efficiency.

APPENDIX A: PSYCHOPHYSICAL
EQUIVALENCE OF TWO MODELS OF
CONTRAST CODING

We show that, for suprathreshold psychophysical discrimi-
nation, a compressive nonlinearity followed by invariant
noise is equivalent to a linear response perturbed by signal-
dependent noise.

Suppose that a stimulus with amplitude A is added to an
external source of Gaussian noise having zero mean and
variance S;2. To this we add a source of intrinsic peripheral
noise (perhaps quantal or neural in origin) with zero mean
and variance Se2. The corresponding internal response is a
Gaussian random variable with mean A and variance S;2 +
Sq2. This variable is subjected to a compressive transforma-
tion F(x). Proposals for the form of F(x) range from log to
power laws with exponent less than unity. We canrepresent
F(x) by a Taylor-series expansion about some fixed value of
x. The fixed value of x corresponds to a particular stimulus
amplitude, say, Ag. The expansion is

F(x) = F(Ag) + F'(A)(x — Ag) + F"(A)(x — A)®+ ...

For most cases of suprathreshold discrimination, x and 4,
are similar, that is, pedestal and pedestal-plus-signal ampli-
tudes do not differ by much. Therefore (x — Ayg) is small,
and the squared and higher terms can be neglected. By
doing so, we are assuming that the amplitudes under study
within a given analysis are sufficiently close together so that
the nonlinearity can be approximated by a linear function
with slope equal to the derivative of the nonlinearity for the
amplitude in question. Therefore

F(x) ~ gx + b,

where g = F'(Ap) and is termed the “differential gain,” and b
= F(Agy) — F'(Ag)Ay. When our Gaussian random variable
passes through this transformation, its mean becomes gA +
b and its variance becomes g2(S;2 + S52). To this variable is
added central noise with zero mean and variance Sj2
Therefore the decision variable has mean gA + b and vari-
ance g2(S,2 + Sy?) + S3? for signals with amplitudes near Ao.
Suppose that the observer is required to discriminate be-
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tween signals having amplitudes of Ag and Ay, both present-
ed in the same source of external noise. The proportion
correct in forced choice is determined by the difference dis-
tribution of the decision variables associated with the two
stimuli. The mean of this distribution is g(A; — Ap). Its
variance is 2[g2(S;2 + Si2) + S3%]. The proportion correct
depends only on the ratio of mean to standard deviation.
This ratio is equal to (4; — Ag)/22[S:2 + Sa? + (S3/g)2]1/2.
This is exactly the same ratio that would result if a linear
response function were perturbed by internal noise with
variance S92 + (S3/g)?, that is, internal noise that depends on
the differential gain g. Since g is the derivative of the
compressive transformation, it gets smaller as pedestal am-
plitude Ag increases. Therefore the equivalent-noise vari-
ance S92 + (Ss/g)? rises.

This analysis shows the equivalence of a compressive non-
linearity to an internal, signal-dependent source of noise.
Both can be characterized by changes in the observer’s
equivalent noise.
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