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The authors describe 3 human spatial navigation experiments that investigate how limitations of
perception, memory, uncertainty, and decision strategy affect human spatial navigation performance. To
better understand the effect of these variables on human navigation performance, the authors developed
an ideal-navigator model for indoor navigation whose optimizing algorithm uses a partially observable
Markov decision process. The model minimizes the number of actions (translations and rotations)
required to move from an unknown starting state to a specific goal state in indoor environments that have
perceptual ambiguity. The authors compared the model’s performance with that of the human observer
to measure human navigation efficiency. Experiment 1 investigated the effect of increasing the layout
size on spatial way-finding efficiency and found that participants’ efficiencies decreased as layout size
increased. The authors investigated whether this reduction in navigation efficiency was due to visual
perception (Experiment 2), memory, spatial updating strategy, or decision strategy (Experiment 3).
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After starting a new job in a new building, you need to develop
an understanding of frequently visited locations within your new
environment. Locations like the closest restroom to your office, the
stairwell, the mailroom, the photocopy room, and other locations
are all important places in your everyday activities. Rather than
studying a map, someone may show you where some of these
locations are, or you may simply find them through your own
exploration. After a period of time (perhaps a few weeks) you
typically have woven these experiences into an internal represen-
tation of the space that allows you to move effectively from one
location to another. This internal representation is usually referred
to as a cognitive map (Hirtle & Heidorn, 1993; Kuipers, 2001;
O’Keefe & Nadel, 1978; Tolman, 1948).

The concept of a cognitive map has influenced how researchers
describe the ultimate representation that people obtain after exten-

sive exploration of a large-scale space. However, Tolman’s (1948)
introduction of the concept did not provide an explicit description
of how one generates this cognitive map from experience or what
information is made explicit in the map. Furthermore, it is not clear
how one accesses this information while navigating through a
familiar environment.

Later research by Siegel and White (1975) provided a descrip-
tion of the metamorphosis of a cognitive map as a person becomes
familiar with a specific environment. According to Siegel and
White, a cognitive map begins as a set of landmarks. This is
followed by a representation that makes explicit a sequence of
actions needed to get from one location to another, called routes.
Finally, these sequences of actions (or routes) are united into an
internal representation of the environment that is more maplike,
called a survey representation. This survey representation is useful
because it can be used to generate novel routes between two
locations within the environment.

Although Siegel and White (1975) proposed that there is a
sequence of stages in the development of a cognitive map, a clear
understanding of the specific processes underlying the acquisition
and access of that map remains uncertain. It should be noted that
there has been a great deal of research into what information is
stored in the cognitive map (Cohen & Schuepfer, 1980; Franz,
Schölkopf, Mallot, & Bülthoff, 1998; Gillner & Mallot, 1998;
Hirtle & Hudson, 1991; Hirtle & Jonides, 1985; Hirtle & Kallman,
1988; Hirtle & Mascolo, 1986; Jacobs, Thomas, Laurance, &
Nadel, 1998; Klatzky et al., 1990; Kuipers, 2000, 2001; Mallot,
Franz, Schölkopf, & Bülthoff, 1997; Mallot & Gillner, 2000;
McNamara, Hardy, & Hirtle, 1989; O’Keefe & Nadel, 1978;
Ruddle, Payne, & Jones, 1997; Schölkopf & Mallot, 1995).

To develop a better understanding of human spatial navigation,
it is important to understand how the cognitive map is developed

Brian J. Stankiewicz, Department of Psychology, University of Texas at
Austin; Gordon E. Legge and Erik J. Schlicht, Department of Psychology,
University of Minnesota, Twin Cities Campus; J. Stephen Mansfield,
Department of Psychology, State University of New York College at
Plattsburgh.

This research was supported by National Institutes of Health Grant
EY02857 to Gordon E. Legge, Air Force Office of Scientific Research
Grant FA9550-04-1-0236 to Brian J. Stankiewicz, National Institutes of
Health Grant EY016089 to Brian J. Stankiewicz, and a University of Texas
Summer Research Grant to Brian J. Stankiewicz. We thank Joshua Gefroh
for his help in collecting data in Experiments 1 and 2, Matthew McCabe for
his help in collecting data in Experiment 3, and Erin Dies for helping
collect additional data in Experiment 2. We also thank Kim Pleticha and
Anthony R. Cassandra for their comments on an early draft of the article.

Correspondence concerning this article should be addressed to Brian J.
Stankiewicz, Department of Psychology, University of Texas, 1 University
Station A8000, Austin, TX 78712-0187. E-mail: bstankie@mail.utexas.edu

Journal of Experimental Psychology: Copyright 2006 by the American Psychological Association
Human Perception and Performance
2006, Vol. 32, No. 3, 688–704

0096-1523/06/$12.00 DOI: 10.1037/0096-1523.32.3.688

688



and the nature of its representation; it is also important to under-
stand the processes and strategies used in accessing and utilizing
the information within the cognitive map. The present studies
investigate issues associated with accessing information from the
cognitive map. Specifically, these studies investigate how effec-
tively participants use the information available in goal-directed
navigation through familiar environments. In these studies, human
performance is compared with the performance of a computer
model, which makes optimal use of the available information. We
use a measure termed efficiency, which is an index for comparing
human performance with optimal performance. The computer
model, implementing an optimizing principle, is in the tradition of
ideal-observer models in perception. In our case, we refer to it as
an ideal-navigator model.

The findings from these studies provide us with important
information about how effectively people use information in the
cognitive map. In Experiment 1 we measured human navigation
efficiency in environments that vary in their size. The primary
finding is that human navigation efficiency declines as the envi-
ronments become larger. We hypothesize that this size-dependent
inefficiency may arise from one of four important processes in-
volved in spatial navigation: perception, accessing the cognitive
map, spatial updating, or decision strategy. Experiment 2 investi-
gated whether perception limited the participant’s ability to choose
an efficient route through the environment. The findings suggest
that perception was not the limiting factor. Experiment 3 investi-
gated whether the participant’s inefficient behavior might be due
to limitations in their ability to access their cognitive map, update
their current state under conditions of uncertainty, or make deci-
sions with uncertainty. By providing the participant with different
types of information in different conditions, Experiment 3 found
that most of the inefficiency found in Experiment 1 appears to be
due to an inefficiency in the participant’s spatial updating
procedure.

It is important to appreciate that these studies investigated a
human observer’s navigation efficiencies—that is, how well did
the participant move relative to an ideal observer with perfect
perceptual processing, perfect map memory, and the ideal decision
strategy. By comparing human performance with that of the ideal
observer, we are able to take into account variations in human
performance that are due to task difficulty. This is because the ideal
observer gives us the very best performance in the task. Because of
this, the ideal observer is only sensitive to factors associated with
task demands; any change in performance above and beyond these
task demands can be attributed to the cognitive and perceptual
processing limitations of the human observer. In the following
section, we describe the ideal navigator used in these studies.

Formalization of a Spatial Navigation Task

This section describes the key properties of our model’s spatial
navigation task. Later we build on the formalism to describe an
ideal navigator that uses principles from partially observable
Markov decision processes (POMDP; Cassandra, Kaelbling, &
Littman, 1994; Chung, 1960; Kaelbling, Littman, & Cassandra,
1998; Sondik, 1971).

Perception

An observer navigating through a complex environment re-
ceives perceptual input in many different forms, including two-
dimensional visual images (and possibly stereo depth if the ob-
server has two eyes), auditory cues, tactile cues from the terrain,
vestibular input, kinesthetic feedback from joints and muscles, and
processed forms of these perceptions that allow for path integra-
tion. At any given moment during a navigation task, one can
specify all of this information in a high-dimensional perceptual
vector (P). The perceptual vector is generated by specifying a
specific state in the environment (si) and the observation function
(�) that converts the physical properties of the environment into a
perceptual vector. The perceptual vector makes explicit all of the
information that is available to the observer at any given moment
during a navigation task:

pi � �(si). (1)

In addition to the perceptual vector, we can also specify a
high-dimensional observation vector (O) that dictates which as-
pects of the perceptual vector are used during spatial navigation.
This observational vector may store image-based data, a visual
“snapshot” image taken at a particular state or an abstract repre-
sentation, such as a list of recognized observable objects from a
particular state (Gillner & Mallot, 1998; Mallot et al., 1997; Mallot
& Gillner, 2000). One important aspect of comprehending human
spatial navigation behavior is to understand what information is
made explicit or encoded given a specific perceptual vector.1 That
is, what people encode and what is perceptually available may not
be the same. � is the function that converts the perceptual vector
into the stored observation vector given by Equation 2:

Oi � �( pi). (2)

Spatial Updating

Spatial updating is one’s ability to determine one’s location and
heading in a large-scale space given one’s knowledge about the
environment (cognitive map) and the sequence of specific obser-
vations and actions while navigating. Spatial updating may rely on
a number of perceptual inputs, including proprioception, vision,
and audition. One form of spatial updating might simply include
integrating the vestibular and proprioceptive cues associated with
movements through the environment (perhaps for path integra-
tion). In addition to these nonvisual inputs, vision seems to play an
integral role in one’s ability to update and move through an
environment. The objects within the environment and the structure
of the environment can give important cues as to one’s current
location and the set of actions that one needs to take to reach one’s
destination.

1 An interesting example of this is the work in change blindness (Si-
mons, 2000). Here, participants observe an image for a brief period and are
able to “perceive” the entire image. Following a brief, blank screen, a
second display is shown in which something significant has been changed
between the two images (e.g., person changes, car color changes, building
is moved, etc.). This sequence of Display A, blank, Display A� continues
until the participant identifies the change. It typically takes many of these
displays to finally “observe” or encode the information despite it being
perceptually available.
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Decision Strategy

A navigation system has available to it a set of actions (A) that
can move it from one state in the environment to another. An
action might be as complex as “follow the center of a hallway until
it ends” or as simple as “rotate clockwise by 90°.” In defining a
navigation task, one needs to specify the set of actions that are
available to the navigator and how these actions are selected.

Navigation Goal

To formalize a spatial navigation task, one needs to specify the
goal. Different tasks generally require different goals. For exam-
ple, the most common spatial navigation goal is to travel from one
known location (like one’s office) to another known location
(perhaps the mailroom). Other times, the goal might be to figure
out where one is located in the environment after getting lost.
Another goal might be to determine which large-scale space one is
located in out of a set of possible environments.2 Each of these
goals may produce different behaviors given identical perceptual
input, actions, decision strategy, and spatial updating procedures.

Ideal-Observer Modeling

An ideal-observer model provides optimal performance given
the information available in the task. Typically, ideal observers are
not proposed as models of human perception or cognition. Instead,
the ideal observer provides a benchmark by which to compare
human performance. More specifically, these models illustrate
what optimal performance should look like. When human perfor-
mance matches that of the ideal-observer model, one can conclude
that the human is making use of all of the information in the task.
When the human underperforms the ideal observer, specific dis-
crepancies between the human data and the ideal data may illu-
minate the constraints imposed by the human information-
processing system.

Ideal-observer analysis has been used to understand perceptual
functions from the quantum limits of light detection (Hecht,
Shlaer, & Pirenne, 1942) to many forms of visual pattern detection
and discrimination (Geisler, 1989), to reading (Legge, Hooven,
Klitz, Mansfield, & Tjan, 2002; Legge, Klitz, & Tjan, 1997), to
object recognition (Liu, Knill, & Kersten, 1995; Tjan, Braje,
Legge, & Kersten, 1995; Tjan & Legge, 1998), eye movements
(Najemnik & Geisler, 2005), and also in reaching tasks (Trom-
mershäuser, Gepshtein, Maloney, Landy, & Banks, 2005). In the
present studies we were interested in understanding the cognitive
limitations of human spatial navigation. To do this, we developed
an ideal-navigator model. This model uses an optimal algorithm to
solve a spatial navigation task. We can compare the performance
of this model with the performance of human participants on the
identical task. The model has available the same information that
is available to the human participants.

In the following section, we formalize an ideal-observer model
for a specific spatial navigation task. The model uses principles
from POMDP theory (Cassandra et al., 1994; Kaelbling et al.,
1998) to navigate through familiar indoor environments. The goal
of the model is to travel from an unknown starting point to a
known target location using, on average, the fewest number of

actions. We use the model to measure the expected change in
performance due to task demands.

Ideal Navigator

We describe the ideal navigator in two sections. The first section
provides an intuitive appreciation of what the navigator is doing,
and the second provides a more formal description of the model.

Intuitive Explanation

The model has perfect knowledge of the environment. This
knowledge comes in two forms. First, the model knows what it
expects to see from every state within the environment. Second,
the model knows the connection matrix for the entire environment.
In other words, the model knows exactly where it will end up if it
executes a particular action at a particular place and orientation in
the environment. Given that it knows what it expects to see from
every state in the environment, it will also be able to determine
what it expects to see in the new state following the action.

The model starts from an unknown location (i.e., placed at a
random location within the environment) and is instructed to move
to a known target location in as few actions as possible. Here are
the steps that the model takes to choose the next action:

1. State elimination. Compare the current view with the
views that the observer would expect to see in the set of
potential states.3 Eliminate the states from the set of
potential states that are not consistent with the current
view. A set of candidate states remains. If there is only
one candidate state, there is no remaining state
uncertainty.

2. Route generation. From each of the candidate states
compute the shortest route that starts with each action
from the set of available actions (i.e., rotate-left, rotate-
right, and forward). The route has to reach the goal state
in the fewest number of actions with no remaining
uncertainty.

3. Action cost. Step 2 provides a list of routes from each
candidate state that starts with a particular action. For
each action, compute the average number of moves that
it would take to reach the goal state from each of the
states. This will provide up to three averages (one for
each action).

4. Action selection. Choose the action that has the minimum
number of moves on average (from Step 3).

5. Candidate state updating. Update the set of potential
states by computing what state the observer would be in
if it executed the selected action from Step 4.

2 This can happen when one exits an elevator on the wrong floor or
emerges from a train station at an unknown stop.

3 Initially, the set of potential states is all of the states in the environ-
ment. However, after the initial view and set of actions, the model elimi-
nates certain states from consideration. Those that remain are the “potential
states.”
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6. Action execution. Execute the action in the real
environment.

7. Encode observation. Encode the new observation.

8. Check if done. Check if at target location with no remain-
ing uncertainty: “Yes” indicates done; “no” indicates
return to Step 1.

This algorithm minimizes the set of actions on average to reach
the goal state. Given that there is uncertainty about the observer’s
position in the environment, the model does not always take the
direct route from the starting state to the target state. Typically, this
situation occurs when the best move from most of the candidate
states is one move (e.g., rotate-left), but the best move from one of
the states is different (e.g., move forward). Given the uncertainty,
the best move is rotate-left. However, if the observer is starting
from this atypical state, the model may need to backtrack after a
few moves.

Simple example. We would like to provide a simple illustra-
tion of how the underlying algorithm actually works. To do this,
we work through a few steps in the environment illustrated in
Figure 1. The left side of this illustration shows the ground truth
of the current state of the problem. The observer is at location E
facing south (E-South). This state generates the observation shown
in the center of Figure 1. Given this observation, the model
computes all of the states that it could be in given that observation
(Step 1 above). The model’s current belief is shown graphically on
the right side of Figure 1. More specifically, the model computes
that there is a .5 probability of being in state ES (at location E
facing south) and a probability of .5 of being in state DN (position
D facing north).

Computing the optimal action. When computing actions, the
model only computes the next best action, assuming that all of the
actions following this action will be optimal. The current model
can execute three different actions: rotate-left 90°, rotate-right 90°,
and move forward to the next gray square in Figure 1. Table 1
illustrates how the model would compute the optimal action given
the two states that it could be in (E-South and D-North). For each
action, the model computes the number of actions assuming that it
is at each state. For each of these assumptions, it also computes the

set of actions required to reach the goal when this assumption is
made and is wrong. The model computes these routes by comput-
ing a breadth-first search through the state-transition matrix until it
finds a route that will reach the goal starting with the specified
action. A more elaborate description of how these values were
calculated is available in the Appendix.

Table 1 shows the most efficient routes assuming that the model
starts in each of the possible states given the previous observations
and actions (Step 2 above). Using these routes, the model com-
putes the expected cost for starting with each action (see the
far-right column of Table 1; Step 3 above). The action with the
lowest expected cost is “Forward” (5.5 actions on average; Step 4
above). After computing that the optimal action is “Forward,” the
model then generates that action (Step 6), makes a new observation
(Step 7), checks to see if it has reached the goal state with no
remaining uncertainty (Step 8), and then updates its belief about
where it is in the environment (Step 1). The model then continues
through this cycle until it reaches the goal state with no remaining
uncertainty.

After computing that the optimal action is “Forward,” the model
then generates that action, gets a new observation, and updates its
belief about where it is based on the new observation and the
action that was generated. The model then repeats the entire
process again until it ultimately reaches the goal with no remaining
uncertainty.

Formal Description

The model has perfect knowledge of the environment. This
knowledge comes in the form of knowing the observation vector
for each state in the environment (see Equation 2). Furthermore,
the model can invert the function such that it can produce the state
or set of states that are consistent with a particular view. It should
be noted that for any given state in the environment there is a
single observation vector,4 but for a particular observation vector
(oi), there may be more than one state that could have produced
that vector.

Given a single observation, there may be some amount of state
uncertainty (i.e., more than one location may generate the same
observation). We can represent this uncertainty by specifying a
belief vector (B) that indicates the probability that the observer
assigns to being in each of the states of the environment (S). We
can write b(s) as the probability assigned to state s when the
observer’s belief state is b.

In addition to the belief state vector and the observation vector,
there is also an action vector A. The action vector is the set of
movements or actions the observer can make within an environ-
ment.5 Given a belief vector, observation vector, and the action
vector, the model requires a function for estimating the observer’s
state within the environment. This state estimator (SE in Equation
3) takes as input the current belief vector, the previous action, and
the current observation and returns an updated belief state. To

4 There is no random noise in the perceptual or observation vector in the
present version of the model. The uncertainty occurs because multiple
states may generate the same observation vector.

5 In the present studies the ideal observer and the human observer have
three actions available to them: rotate-right 90°, rotate-left 90°, and move
forward one hallway unit.

A B C

D

E

F G H I

A B C

D

E

F G H I

Ground Truth Current Belief

Observation

Figure 1. An illustration of a simple environment. The star at Position C
is the goal. The illustration on the left indicates the ground truth of the
current state of the environment. The center graphic shows the current
observation made by the observer, and on the right is the observer’s belief
given the initial observation, pES � pDN � 0.5.
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update the current belief state, one simply needs to apply Bayes’
rule for estimating the likelihood that the observer is in a given
state s�:

SEs� � p(s��a,o,b)

SEs� �
p(o�s�,a,b)p(s��a,b)

p(o�a,b)
. (3)

Optimal Move Decisions

Route Generation

The goal of the system is to reach the goal state with no
uncertainty, b(sTarget) � 1.0, using the fewest number of actions
(i.e., the lowest cost). To compute these routes (or cost), the model
does a breadth-first search through the state-transition matrix. The
state-transition matrix makes explicit the resulting state (s�) that
the observer would be in if the model in one state (s) and generated
a specific action (a; see Equation 3). The model searches through
the state-transition matrix using a breadth-first search algorithm
until it finds a route in which the observer would reach the goal
state with no remaining uncertainty.

Action Cost

In the model, each move has an associated cost (Ca). For each
state (s) we can compute a set of routes (R) that will move the
observer from a state (s) to the goal state (sTarget) with no remain-
ing uncertainty. For each state there are multiple routes to the
target state (sTarget). For each of these routes we can compute a
cost associated for that route, Cost(r,s,b), as specified in Equa-
tion 4:

Cost(r,s,b) � b(s)�
a�r

Ca. (4)

Note that r is the vector of actions that can move the observer from
state s to the target state. Note also that the sum of the costs is
multiplied by the likelihood that the observer is located at a
particular state in the environment. That is, the observer weights
the expected cost for reaching the goal state by the likelihood that
they are in that particular state, b(s). In this way the observer

optimally integrates the costs of reaching the goal based on the
certainty that it is in each state.

Because the model may be in a state of uncertainty, the model
only plans an optimal move one move ahead. The reason for this
is that after the move, the observer will collect new perceptual
information that will modify the belief vector (see Equation 2). For
each state s the model computes the least expensive route that
starts with each action (r1 � a):

StateActionCost(s,a�A) � min[Cost(r1 � a,s,b)]. (5)

After computing the cost of making each action from each state,
the model then selects the action that minimizes the cost across all
of the states in the environment (see Equation 6). If there are two
moves that have the same minimum cost, the model randomly
chooses one of the moves:

Move � min
a�A ��

s�S

StateActionCost(s,a)�. (6)

After choosing the action selected by Equation 6 and making the
action, the model receives a new observation vector (o). The model
then updates its belief vector using the new observation vector (o)
and the selected action (a) using Equation 3.

Experiment 1: Effect of Layout Size on Spatial
Navigation Performance

In Experiment 1 we were interested in understanding the effect
of increasing layout size on human spatial navigation performance.
The purpose of this study was twofold. First, we wanted to deter-
mine if participants were inefficient at navigating with state un-
certainty, and second, we wanted to investigate how these ineffi-
ciencies change as a function of the layout size. Increasing the
layout size should increase the demands placed on an observer’s
perceptual processing (i.e., gathering perceptual data from short
hallways vs. longer hallways), accessing the cognitive map (the
larger environments have more hallway structures to remember
than smaller environments), belief vector updating (given an ob-
servation, there are more places to consider in larger environments
than smaller), and decision strategy (because the participant will

Table 1
An Example of How the Ideal Navigator Computes the Optimal Action Given the Scenario Shown in Figure 1

D-North (assumed) E-South (assumed)

Expected costD-North (true state) E-South (true state) E-South (true state) D-North (true state)

Left LRF(R*)F � 5 LRF(R*)RFFFRF � 10 LLFF(R*)F � 6 LLFF(R*)RFFFRF � 11 .5 � (.5 � 5 � .5 � 10) � .5
� (.5 � 6 � .5 � 11) � 8

Right RLF(R*)F � 5 RLF(R*)RFFFRF � 10 RRFF(R*)F � 6 RRFF(R*)RFFFRF � 11 .5 � (.5 � 5 � .5 � 10) � .5
� (.5 � 6 � .5 � 11) � 8

Forward F(R*)F � 3 F(R*) RFFFRF � 8 F(R*)RFFFRF � 8 F(R*)F � 3 .5 � (.5 � 3 � .5 � 8) � .5
� (.5 � 8 � .5 � 3) � 5.5

Note. The observer can be in two states: D-North and E-South. The column titled D-North provides a description of the estimated cost (in actions)
assuming that the observer is at D-North. Below that is the cost when the observer is at D-North versus when the observer’s assumption is wrong (E-South).
In each of these columns is the set of actions (L � rotate-left; R � rotate-right; F � forward). The asterisk indicates when the observer would have gotten
a different observation depending on whether the observer is in the assumed state or the other state. The actions up to the asterisk are the same. In this case,
given the situation in Figure 1, the observer would choose “move forward” because this action minimizes the expected cost.
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have to travel longer to reach the goal, the participant will have to
make more decisions in larger environments than smaller environ-
ments). We hypothesized that if participants have a cognitive
limitation in one of these functions, it should become evident as a
decline in efficiency as the environment becomes larger. To in-
vestigate this issue, we used four different layout sizes defined by
the number of hallway segments in a layout. The four levels of
layout size were 10, 20, 40, and 80 hallway units (see Figures 2
and 3).6

In this experiment, we trained participants to navigate through
these virtual environments until they attained a specified learning
criterion. Once proficiency was established, we then started par-
ticipants from a random state within the environment and in-
structed them to move to a target location and resolve any remain-
ing uncertainty they might have, using the fewest possible actions.
Because the environments were perceptually sparse (no object
landmarks), the participant could start a test session with consid-
erable state uncertainty. We also ran the ideal navigator through
the equivalent environments with the same set of actions and the
same goal.

Method

Apparatus

The experiment was run on a Dell computer with a 19-in. (�48-cm)
color monitor. The participant moved through the environment by making
keypresses that corresponded to a 90° clockwise rotation, a 90° counter-
clockwise rotation, or a forward translation of one hallway unit.

After the participant made a keypress, the computer would rotate or
translate the virtual “camera” in the virtual space. The camera would

produce the appropriate optic flow for the action indicated by the keypress.
A rotation was completed in 750 ms, and a translation was completed in
900 ms.

Stimuli

For each layout size (10, 20, 40, and 80 corridors), two different
environments were produced for a total of eight different environments.
Figure 2 provides an illustration of an environment of size 20. Each layout
had one common feature. They all had an L-junction on the exterior part of
the layout (see lower left-hand portion of the hallway structure in Figure 2).
The end of this L-junction served as the starting point for each trial of the
exploration phase of the training session.

The environments were randomly generated. We generated the environ-
ments by specifying three parameters: the number of hallway units com-
prising the environment, the maximum number of vertical hallway units,
and the maximum number of horizontal hallway units that the environment
could have (plat size). The plat size for the present studies was 20 hallways
by 20 hallways.

To generate an environment, the computer began by randomly selecting
one of the 400 potential hallways in the plat. After selecting a hallway, the
computer then identified the set of potential hallways. Potential hallways
were all of the hallways that connected to the current set of selected
hallways. The computer then selected one of the potential hallways and
removed the hallway from the list of potential hallways. It then recomputed
the new set of potential hallways. The computer continued with this
process until it reached the layout size minus 2 hallways. At the end, two
hallways were added to the environment (an L-junction) that served as the
starting point during the exploration phase of the experiment.

The environments were rendered from a first-person perspective with the
eye height of the camera (in the virtual environment) placed at 5 ft.
Figure 3 provides a sample view of the environment from the participant’s
perspective. To increase the participant’s ability to differentiate between an
intersecting hallway and a wall, we placed red railings at junctions on walls
where there was no intersecting hallway (see Figure 3, left).

6 A single hallway unit is a 30-ft-long hallway that was used to generate
the random environments used in the present study. These hallway units
were randomly placed on a grid to generate environments similar to the
map shown in Figure 2.

Figure 2. An example of the types of maps generated by the random
layout generator. This environment is a 20-hallway environment. Each line
segment connecting adjacent grid points in the figure represents a hallway.
The end of the lower-left L-junction served as the starting point for each of
the exploration sessions.

Figure 3. An example of a first-person rendering of an environment used
in Experiment 1: a view from the perspective of the observer in the
environment. Each hallway segment had the same structure in terms of the
textures on the walls, floor, and ceiling. The objects (railings and ceiling
lights) in each hallway were also the same for each hallway.
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To ensure that all of the hallways were identical, we used an “environ-
ment parts kit” to generate the environments. This parts kit consisted of
three basic parts: a hallway, an intersection node, and a wall. To generate
a virtual environment, we placed these parts in specific configurations to
give the appropriate environment layout. Figure 4 illustrates the parameters
and properties of the parts kit, and Table 2 lists details about the parameters
of each part, including the rendering color or texture.

Procedure

Participants took part in a training session and in a test session for each
condition of the experiment. The training session was designed to provide
the participant with a detailed representation of the environment. The
training session consisted of two phases: an exploratory phase and a
drawing phase. In the exploratory phase, the participant started from an
external L-junction. The participant explored the environment for 3 min by
making keypresses on the number pad to initiate the desired movement.
The “8” corresponded to a forward movement, and the “4” and “6”
corresponded to rotate counterclockwise and clockwise rotations, respec-
tively. During the training phase, participants learned both the layout of the
environment and a target location. The target location was specified by an

auditory signal (the sound of a bell) each time the participant walked over
the target location. Participants were told that later in the experiment they
would start from a random place in the environment and would need to
move to the target location making as few actions as possible.

After exploring the environment for 3 min, the participant took part in
the drawing phase. In the drawing phase, the participant was given a grid
pattern that had a single L-junction placed near the center of the grid that
corresponded to the starting location in the exploration phase of the study.
The participant was told to “connect the dots” to recreate the environment
just explored. Participants were informed that each dot could be thought of
as a node or the stopping location when they made a forward movement
through the environment.7 If the participant’s map drawing did not per-
fectly reproduce the grid layout of the environment, then the participant
took part in another 3-min exploration session followed by another drawing
test. Participants continued in the 3-min exploration phase followed by the
drawing phase until they drew the environment correctly twice in a row.

After reaching criterion in the training phase, the participants entered the
test phase of the experiment. In the test phase, participants started from a
random state (i.e., a random location and orientation) in the environment.
Participants were instructed to move to the target location using as few
actions (keypresses) as possible. They were informed that a rotation and a
translation were both considered an action. When participants reached the
target location, there was no auditory signal indicating they were there.
Instead, participants were required to indicate when they believed they had
reached the target location by pressing the spacebar on the computer. After
the spacebar was pressed, the screen went white; when the participant was
ready to begin the next trial, the participant pressed the spacebar a second
time to reveal the new starting view.

Participants started from each possible position in the environment an
equal number of times (e.g., each of the 17 nodes in Figure 2). At each
starting position, the computer randomly selected one of the four possible
starting orientations. Notice that this means that a participant sometimes
started facing a wall. Each participant participated in 320 trials in each of

7 To be certain that participants understood this process, we first trained
them on a small (10-hallway) layout environment before starting the
experiment.
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Figure 4. To generate the environments, we used a “parts kit” that consisted of a hallway, a node, and a wall.
All of the structures were generated using these three fundamental parts. Some of the measurements are given
in the graphic here; more of the details are listed in Table 2. The upper graphic shows the measurements when
looking at each part from above, and the lower graphic illustrates the layout when looking at the environment
from the side.

Table 2
Properties of the Environment Parts Kit Used to Generate the
Random Environments for Experiments 1 and 2

Item Height (ft.) Width (ft.) Length (ft.) Color/texture

Hall floor 10 30 Burlap
Hall ceiling 10 30 Cement
Hall wall 10 30 Cement
Hall railing 1 0.5 30 White
Hall light 0.5 8 28 Purple
Wall 10 10 Cement
Wall railing 1 0.5 4 Red
Node floor 10 10 Burlap
Node ceiling 10 10 Cement
Node light 0.5 6 6 White
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the environments. Participants were tested in each of the eight environ-
ments in a random order.

Participants

Three female participants were tested in the experiment. Each participant
had normal or corrected-to-normal vision. The ages of the participants
ranged from 21 to 24 years, and all were students at the University of
Minnesota. The participants were paid $8/hr to participate in the study.

Results

The primary dependent measure in Experiment 1 was the num-
ber of moves required to reach the target location. For participants
to solve this task, they had to determine both their location within
the environment (because they were starting from a random loca-
tion) and the shortest path (fewest actions) to the target location.
The upper graph of Figure 5 illustrates the average number of
moves participants took as a function of layout size. Trials in
which participants indicated the target location at the wrong posi-
tion or trials in which it would have been impossible for the
humans to have reached the goal state with no remaining uncer-
tainty were excluded from the analysis (combined, these trials
were less than 1% of the trials). Figure 5 also illustrates the number
of moves, averaged across layouts of a given size for the ideal
navigator.8 The number of actions for the ideal observer increases
initially (from 10 to 20 hallways) with the effect of layout size
having a diminishing effect between 20 and 80 hallways.

The lower plot of Figure 5 illustrates an efficiency measure that
allows us to factor out task difficulty in human behavior. Effi-
ciency is computed as the number of actions required by the ideal
observer divided by the number of actions made by the human.
The lower plot of Figure 5 illustrates the efficiency functions for
the 3 participants. A one-way analysis of variance (ANOVA)
revealed a significant effect of layout size on navigation efficiency
for each of the participants: Sub1, F(3, 908) � 5.422, p � .01;
Sub2, F(3, 908) � 32.11, p � .01; and Sub3, F(3, 908) � 22.03,
p � .01. Human efficiency dropped from approximately 80% for
the smallest environment (10 hallway units) to approximately 50%
in the largest environment (80 hallway unit environments).

Discussion

The results from Experiment 1 show that participants’ naviga-
tion performance is suboptimal. This is demonstrated by the fact
that the efficiency is below 1.0 across each of the layout sizes. The
results also show that participants become less efficient as the size
of the environment becomes larger. The sources of inefficiency
might have several causes, which can be broken down into four
primary categories: perception, accessing the cognitive map, spa-
tial updating, and decision strategy.

Source of the Cognitive Limitation

Using the ideal navigator, we can begin to investigate where the
cognitive limitations might exist in spatial navigation. In the fol-
lowing four subsections, we outline different causes of this sub-
optimal behavior. In addition to this, we also consider Schölkopf
and Mallot’s (1995) view-graph model of spatial navigation to
determine if this model can explain the suboptimal behavior.

Limited perceptual processing. One function that might be
limiting human navigation performance is the visual information
used by the human observer. Although the environments used in
Experiment 1 were very sparse, the observers may not have pro-
cessed all of the hallway information while navigating. For exam-
ple, participants may simply have identified the structural infor-
mation up to the next hallway unit, and then ignored the structural
information beyond that intersection. Of course this perceptual
limitation could be extended so that participants might only pro-
cess N closest hallways and ignore the perceptual information
beyond that. A perceptual limitation like this would affect navi-
gation in larger environments more than in smaller environments
because the average length of a corridor in the larger environments
is longer than in the smaller environments.

Accessing the cognitive map. Participants may have difficulty
accessing the entire cognitive map while they are navigating.
Although participants are required to draw the environment cor-
rectly twice in a row before they can participate in the testing
phase, they might not be able to access the entire cognitive map
with sufficient precision to make the relevant comparisons implicit

8 The ideal-observer performance was computed for each participant in
each environment. That is, the model started from the same states as the
human observers. Because there was no significant variation across the
participants, we plotted the average performance across the trials, partici-
pants, and environments.
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Figure 5. The effect of layout size on human navigation performance.
The upper graph shows the average number of moves for the 3 participants
(Sub1, Sub2, and Sub3) and the ideal navigator. The lower graph shows
navigation efficiency of the participants, computed as the average number
of actions of the ideal navigator divided by the number of actions made by
the participant. Error bars represent 1 standard error of the mean.
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in ideal performance. Facility in accessing the global cognitive
map may also be adversely affected by the concurrent task of
navigating through the environment. Therefore, it is plausible that
working memory capacity is preventing participants from loading
the entire cognitive map while they are navigating. If participants
have a limited working memory capacity that only allows them to
load a limited amount of the layout information, then as the
environment becomes larger, the proportion of the entire layout
that is being considered drops, with a corresponding reduction in
navigation efficiency.

Spatial updating. A third cognitive limitation may arise from
the participants’ ability to update their position within the envi-
ronment. In the present experiment the participant starts from an
unspecified location within the environment. When participants
make their first observation, there may be many locations consis-
tent with this observation; in other words, there may be substantial
ambiguity. We quantify this ambiguity with the belief vector. As
the participants make actions within the environment and obtain
new observations, the belief vector should change, and the uncer-
tainty should decrease until ultimately the participants know ex-
actly where they are located. One possible source of suboptimal
human performance might be due to the participant’s inability to
accurately update this belief vector while moving through the
environment. Participants may be limited in the number of loca-
tions they can consider (e.g., 7 	 2 places; Miller, 1956), or they
may not possess an optimal updating strategy. Because the larger
environments consist of more locations, the number of states in
which the observer could be while navigating also increases. Thus,
if participants have a suboptimal spatial updating strategy or
limited belief vector memory, their performance will be negatively
affected as the environment becomes larger.

Suboptimal decision strategy. Finally, the strategy used by the
participants may be suboptimal. For example, one suboptimal
strategy is an inappropriate cost function placed on each action.
The participants in the experiment were explicitly instructed to
make as few actions as possible to reach the goal state. This would
place an equal cost on translations and rotations. It is possible that,
despite these instructions, participants did not treat each action as
having an equivalent cost. For instance, they may have associated
a larger cost with a translation than a rotation. Another example of
a suboptimal decision strategy would be if participants first set the
goal of unambiguously localizing themselves within the environ-
ment, and only then focused on moving to the target location with
the minimum number of actions.

View-Graph Strategy

One model that does not use an ideal decision-making strategy
is the view-graph model of spatial navigation proposed by
Schölkopf and Mallot (1995). In this model, spatial navigation is
accomplished by storing a series of views in memory and, for each
view, assigning a specific action for reaching a particular destina-
tion. This model has been used in robotics for learning and
navigating through complex environments. Research by Gillner
and Mallot (1998) found evidence that human participants may use
this type of strategy while navigating through complex environ-
ments. It is possible that participants were engaging in this type of
suboptimal decision strategy in Experiment 1. To test whether
participants are engaging in this strategy, we investigated how well

one can predict the human action given a particular view. If
participants are using this strategy for navigating through these
environments, we would expect to be able to predict their selected
action for each view. To investigate this question, we measured the
conditional entropy between the action selected (A) and each view
in the environment (see Equation 7). High conditional entropy
indicates that the observer’s responses were highly variable for
each view, whereas low conditional entropy indicates that for a
given view the observer typically made the same response. Ac-
cording to the view-graph model of spatial navigation, humans
should choose the same action (A) given a specific view. That is,
the view-action entropy should be relatively low (or possibly 0):

H(A�V) � �
v�V

p(v) ��
a�A

p(a�v)log
1

p(a�v)�. (7)

As a comparison, we also computed the conditional entropy for
the ideal navigator. The navigator is not in any way constrained by
a view-action association. The model instead selects the optimal
action given its state of uncertainty and knowledge of the envi-
ronment. The model serves as a baseline by which to compare the
human data. It provides a lower bound on the action entropy if a
system is making optimal use of the perceptual information and is
not limited in its strategy.

Figure 6 shows that the ideal navigator’s conditional entropy is
lower than that for each of the participants. That is, it is more
difficult to predict the human action (given the view) than the ideal
navigator’s action. This finding suggests that if participants are
limited by their decision strategy in Experiment 1, they do not
seem to be limited in the way suggested by the view-graph model.

Interim Summary

Experiment 1 investigated the effect of increasing layout size on
human navigation performance. We measured the number of ac-
tions a participant used to move from an unspecified location in a
familiar virtual reality environment to a target location. Four
layout sizes were used: 10, 20, 40, and 80 hallways. The raw data
showed that participants required more moves to reach the goal as
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Figure 6. Illustration of the conditional action entropy—H(Action|View),
or H(A|V)—for the 3 participants (Sub1, Sub2, and Sub3) and for the ideal
navigator. Error bars represent 1 standard error of the mean.
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the layout size increased. These findings are similar to those
reported by O’Neill (1991) in which participants backtracked more
often and took more wrong turns as the environment complexity
increased. However, in the present study and those reported by
O’Neill, the increase in wrong turns or more actions could be due
to cognitive limitations or task demands. To determine whether a
cognitive limitation contributed to the increase in the number of
actions in the present study, we developed an ideal navigator with
no perceptual, memory, or strategy limitations (cognitive limita-
tions). The model’s performance was compared with human per-
formance. We found that the increase in the number of human
actions outpaced that of the ideal navigator, suggesting there is a
cognitive limitation that is affecting human spatial navigation.

We hypothesized that the inefficiency found in this experi-
ment might be due to inefficiencies in perceptual processing,
accessing the cognitive map, spatial updating, or decision strat-
egy. In Experiment 2 we investigated whether the inefficiency
can be explained by an inefficient perceptual processing sys-
tem. In Experiment 3 we investigated whether the inefficiency
is in accessing the cognitive map, spatial updating, or decision
strategy.

Experiment 2: The Effect of Limited Visual Information
on Spatial Navigation Performance

Experiment 2 examined whether human navigation performance
is limited by visual information-processing constraints. For this
experiment, the participants performed the same navigation task as
in Experiment 1. However, rather than manipulating the size of the
layout, we manipulated how far the observer could see along each
corridor (the view depth). This was accomplished by adding “vir-
tual fog” to the environment (see Figure 7). The ideal-navigator
model was confronted with the same limitation, by restricting how
much of the observation was available from each state. As in
Experiment 1, we compared the navigation performance of human
observers with the performance of the ideal navigator to obtain
navigation efficiency.

If human navigation inefficiency in Experiment 1 is due to a
failure to use information beyond some view depth, then restricting

the view depth for both humans and the ideal navigator should
bring performance into closer agreement. Accordingly, we expect
to see an improvement in efficiency when the view depth is
limited.

Method

Apparatus

The apparatus was the same as in Experiment 1.

Stimuli

View depth was manipulated by adding virtual fog to the environments
to limit how far down the hallway an observer could see. Figure 7
illustrates this effect by showing a view without fog (unlimited-view
condition) and a view with fog (fog depth � 1 hallway). The fog provided
a method for manipulating viewing depth that felt relatively natural.

Figure 8 provides an analysis of the view information available for the
four environments used in Experiment 2. One concern in running this study
was whether the fog manipulation in fact imposed a substantial perceptual
limitation. Suppose the fog restricted visibility to a distance of one hallway
unit. The effect would be substantial if there were many states in the layout
in which an unrestricted view extends more than one hallway unit. The
question is whether the environments we used included a substantial
proportion of states with these longer views. Figure 8 plots the frequency
of states as a function of the number of collinear hallways for each
environment (i.e., hallway length). In the present study, the fog (limited
view) condition would limit the perceptual information available in the
states in which the hallway length is greater than one. Across the four
environments, this constitutes 36% of the states.

Procedure

Four different environments were used in Experiment 2. Each environ-
ment consisted of 40 hallway units. Participants were tested in all four
environments: two with limited view depth and two with unlimited view
depth. Each environment was used in both viewing conditions across the
participants.

The training procedure was the same as in Experiment 1. When partic-
ipants trained for the limited-view condition, they completed the training
session with limited visual input.

Figure 7. Sample views from Experiment 2. The image on the left illustrates the view in the unlimited-view
condition, and the image on the right illustrates the same perspective in the limited-view condition. Note that in
the image on the left the participant can determine the hallway structure for the next node, but beyond that node
the participant has no perceptual information.
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Participants

Eight participants were tested in Experiment 2: 4 women and 4 men.
Their ages ranged from 20 to 22 years. All participants had normal or
corrected-to-normal vision.9

Results

Figure 9 shows the average efficiency for the 8 participants in
each condition. The primary question of interest is whether hu-
mans became more efficient when view depth decreased (limited-
view vs. unlimited-view conditions). Figure 9 shows that there was
no improvement in the limited-view condition over the unlimited-
view condition, and in fact, the trend is in the opposite direction
(the unlimited-view condition is better than the limited-view con-
dition). A two-tailed paired t test showed that there was no sig-
nificant difference between these two conditions, t(7) � 2.03, p �
.082.

Discussion

This experiment investigated the effect of limiting visual input
on spatial navigation performance. The purpose of this experiment
was to determine whether the cognitive limitation found in Exper-
iment 1 was due to inefficient visual processing. For example, in
Experiment 1, participants might have processed information only
one or two hallway units down a corridor view. If participants’
performances were limited by visual processing, then the partici-
pants should be less efficient in environments that have more long
corridors10 than those with fewer long corridors. The smaller
environments in Experiment 1 have fewer long corridors than the
larger environments, and thus limited visual processing might
account for the data.

We predicted that if participants were limited in the amount of
visual information that they process, then we should find an
increase in efficiency when we redefine the task to have a reduced

visual demand. In other words, the fog manipulation reduced the
useful information for both the human participants and the ideal-
navigator model, potentially putting the human and model on a
more even footing. If this were the case, we would have found
higher efficiency in the fog condition. Because we did not find
higher efficiency, we conclude that human inefficiency in Exper-
iment 1 is not due to a failure to encode and use visual information
beyond a restricted view depth.

Experiment 3

Experiment 3 investigated whether the inefficiency found in
Experiment 1 was due to inefficiencies in (a) accessing the cog-
nitive map, (b) spatial updating, or (c) decision strategy. In Ex-
periment 3 we did not manipulate the layout size (we used only
one layout size: 40 hallways) but instead provided participants
with supplementary map information while they navigated to the
target location from an unspecified starting location. The experi-
ment had three conditions differing in the type of supplementary
information made available to the participant: no-map, map, and
map � belief vector conditions. In each of these conditions, the
information that is made explicit (map or belief vector) is implic-
itly available to the human observer and to the ideal-navigator
model during the experiment. That is, we are not changing the task
at all (from an information perspective), we are simply making

9 We ran more participants in Experiment 2 because it took much less
time to collect a complete data set in this study than it did in Experiment
1 (approximately 18 hr/participant in Experiment 1 and only 8 hr/partici-
pant in Experiment 2).

10 A corridor is a series of collinear hallways.
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Figure 8. View-depth analysis of the four environments used in Exper-
iment 2. The graph shows the number of states (Frequency) that have a
specific number of collinear hallway units that can be observed from that
state. For example, when the participant is looking at a wall, the number of
collinear hallway units is 0. Observers in the unlimited-view condition
would be able to see all of the hallway units. Observers in the limited-view
condition would be able to see all of the information in the 0 and 1
view-depth states, but in the states with a view depth greater than 1 they
would lose access to the more distant information (beyond a view depth
of 1).

Figure 9. The mean navigation efficiency when navigating in the unlim-
ited and limited viewing condition in Experiment 2. In the limited-view
condition, visual information was available as far as the next intersection
(further details were obscured by “fog”). In the unlimited-view condition,
visual information was available to the end of the corridor. Error bars
represent 1 standard error of the mean.
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some information explicit that might be difficult for participants to
generate independently.

The no-map condition allowed us to measure baseline efficiency
performance for the task and was almost identical to the conditions
in Experiment 1. The only difference was that the participants
simply saw a blank square on the lower-left corner of the screen
while they were navigating through the environment (see Figure
10). In the map condition, we provided a map of the environment
on the computer monitor while the participant was navigating.
Because Experiment 3 used the same map-drawing technique as in
Experiments 1 and 2, we know that participants’ cognitive repre-
sentations are sufficient to generate a global map of the environ-
ment. But it is possible that generating the map is computationally
burdensome, and that during navigation it is not easy to maintain
access to a global cognitive representation of this type. With the
use of a map display, the participants were not required to access
a cognitive map during navigation. Instead they could reference
the visual map presented on the display. Thus, we hypothesized
that if human inefficiency is due to problems accessing the cog-
nitive map, then we should find a significant improvement in
performance from the no-map condition to the map condition.

Alternatively, participants might be inefficient in their spatial
updating ability. Remember that in this experiment participants are
starting from an unspecified location in which the initial view can

leave the observer with state uncertainty. As participants move
through the environment, they have to use the perceptual informa-
tion and the action selections to update where they believe they are
in the environment. Or in terms of the model, they have to update
their belief vector. In the map � belief vector condition, we
presented the observers with the map and the target location.
Superimposed over the map was an accurate belief vector, assum-
ing that all of the perceptual information was being used (see
lower-left and lower-right panels of Figure 10). This belief vector
was updated after every action made by the observer. The com-
puter updated the current belief vector by factoring in the current
and previous observations and the previous actions. We hypothe-
sized that if the navigation inefficiencies found in Experiment 1
were due to spatial updating, adding the belief vector information
should show an increase in movement efficiencies from the map
condition to the map � belief vector condition.

Finally, participants might simply have an inefficient movement
strategy. It is possible that participants might be accessing the
cognitive map perfectly and also generating an accurate belief
vector, but their action selection strategy is inefficient. For exam-
ple, participants may decide to choose the action that minimizes
the overall distance between their current position and the goal
state. Although under some conditions this might be a good strat-
egy, in others it might lead participants down dead-end hallways,

No Map Map

Map + Belief Vector

Figure 10. Illustration of the three conditions as viewed by the observer. The upper-left illustration shows a
view when there is no map information provided. The upper-right panel shows a view when the map is provided.
In addition to the map, the location of the target position was also shown by a small square at that position. The
lower-right panel shows a view when the observer sees the map with an accurate belief vector superimposed on
top of it. The lower-left panel shows an enlarged version of the belief vector map. The arrows on the map show
where the participant could be given the previous views and actions along with the current view. Note that not
all of the dead ends are shown as possible locations. This is because this image was generated after a sequence
of actions.
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which would be inefficient. If this is true, then adding the supple-
mental information will not increase the participant’s efficiencies
at all. Thus, if the inefficiencies are in the action selection strategy,
then we predict there will be no difference in performance across
the three conditions.

Method

Apparatus

The apparatus was the same as in Experiment 1.

Stimuli

Experiment 3 manipulated the supplemental map information available
to the participant. There were three types of supplemental information: no
map, map, and map � belief vector. Figure 10 provides a sample illustra-
tion of how these conditions appeared to the participant.

In each condition there was a black square that was presented in the
lower-left quadrant of the display. The location of this display was care-
fully chosen so that it would not block any of the informative information
during the experiment. In the no-map condition this square was blank; in
the map condition a static map image was superimposed over the black
square. In addition to the map, there was a blue square indicating where the
target location was in the environment. In the map � belief vector there
was the map plus the target location symbol superimposed on the black
square. In addition to this, there was a collection of red pointers indicating
where the participant could be located in the environment given the
participant’s current view, previous views, and actions. These pointers
were updated after each of the participant’s actions.11

Procedure

Experiment 3 used one environment that consisted of 40 hallway units.
The training procedure was the same as in Experiment 1. No supplemen-
tary map information was present during the training phase. After reaching
criterion (i.e., drawing the environment correctly twice in a row), partici-
pants started the testing phase.

During the testing phase, participants started from each state in the
environment three times, once for each of the three conditions. The order
of state � supplemental information conditions was randomized for each
of the participants.

Participants

Four participants were tested in Experiment 3: 2 women and 2 men
ranging in age from 20 to 22 years. All participants had normal or
corrected-to-normal vision. Participants 6, 7, and 9 were all volunteers who
worked in the lab. Participant 8 was a paid participant who received $10/hr
for his participation in the study.

Results

Experiment 3 manipulated the supplemental information avail-
able to the participant while navigating from an unspecified loca-
tion to a target location. For each participant we computed their
movement efficiency by taking the ratio of the number of moves
required by the ideal observer to the number of moves required by
the human observer.

Figure 11 illustrates these data for the three supplementary map
conditions. Planned comparison t tests found that there was no
significant difference between the no-map and the map conditions
for all 4 participants (see Table 3), but there was a significant

effect between the map and the map � belief vector condition for
all 4 participants.

Discussion

The findings from Experiment 3 are very clear. There was no
significant increase in performance from the no-map to the map
condition. This result suggests that participants did not have dif-
ficulty in accessing their cognitive map or that the global infor-
mation afforded by the supplementary map was not useful to them.
By contrast, there was a significant improvement in performance
from the map to the map � belief vector condition (from approx-
imately 60% efficiency to 95% efficiency). This large increase
suggests that most of the inefficiency in Experiments 1 and 2 is
due to the processes involved in updating their belief vector. The
belief vector is a list of states that the observer (human or ideal)
could be in given their previous observations and actions. After the
participant makes an action and makes a new observation within
the environment, he or she will update his or her belief vector (i.e.,
update the set of states the observer believes that they could be in).
Our results indicate the participants have difficulty integrating the
set of observations and actions with their cognitive map to gener-
ate an accurate list of states.

The results from the present study provide important informa-
tion about sources of human inefficiency while navigating, but
they do not tell us why humans are inefficient. Understanding why
participants are inefficient at updating their belief vector will be
addressed in future research. However, we speculate that there are
four subprocesses involved in generating an accurate belief vector.
These processes include the following:

1. Remembering the belief vector prior to the action you
just made.

11 In the present studies there was no noise in the actions, nor was there
any uncertainty in the observation vector given to the model. Because of
this, the probability that a participant could be in a particular state was
either 0 or 1/N (where N is the number of potential states in the belief
vector).
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Figure 11. Action selection efficiency plotted for the 4 participants
(Sub6, Sub7, Sub8, and Sub9) in Experiment 3 as a function of the
supplementary information provided to the participant while navigating.
Error bars represent 1 standard error of the mean.
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2. Computing the states that you could be in given your
previous belief vector and your most recent action (e.g.,
if I turned left, and I were in these three locations, where
could I be now?).

3. Considering all of the states that are consistent with your
current view.

4. Eliminating the set of possible states given the observed
view (or only considering the intersection of states from
the second and third process).

General Discussion

Spatial navigation is composed of multiple processes that in-
clude perception, memory, spatial updating, and decision making.
A breakdown in any one of these processes can have detrimental
effects on human spatial navigation performance. The series of
studies described here investigated navigation efficiencies as a
function of the size of the environment, with reduced visual input
and with supplemental layout information. The goal of these
studies was to understand how efficient human spatial navigation
was under conditions of state uncertainty (i.e., when one does not
know one’s exact position and orientation within a familiar envi-
ronment). Each of these studies compared human performance
with that of the ideal navigator, based on principles from POMDP
(Cassandra et al., 1994; Chung, 1960; Kaelbling et al., 1998). The
findings from the present study provide insight into the cognitive
limitations in navigating through indoor environments. First, Ex-
periment 1 shows that participants become less efficient in their
ability to navigate through large-scale spaces as the environments
become larger (in terms of hallway units). This suggests that there
is some sort of cognitive limitation that is correlated with layout
size.

One possible limitation might be in the analysis of the visual
information that is available from each view. Experiment 2 was
designed to address this issue. By limiting the visual information
for the human and ideal observer, we were able to see whether
human efficiency changed under these two conditions. There was
no change in efficiency, which suggests that the results from
Experiment 1 were not due to a limitation in processing perceptual
information.

Experiment 3 was designed to address whether the limitation
might be due to accessing the cognitive map from memory, con-
sidering multiple states simultaneously, or the participant’s deci-
sion strategy. The results from this study clearly showed that a

large part of the limitation is due to ineffective use of preceding
views and actions in resolving where they could be in the
environment.

Navigating With Uncertainty

The present studies suggest that participants have difficulty
navigating when there is state uncertainty. The three experiments
show that the major factor in participants’ inefficient navigation
behavior lies in the methods they use to update their belief vector.
Within this updating procedure, there are four specific procedures;
any one of them, or a combination of inefficient processing, can
lead to the inefficient behaviors found in the present experiments.
These subprocesses include the following: (a) generate all of the
states that are consistent with the current observation, (b) remem-
ber the candidate states, (c) update this collection of states on the
basis of the most recent action; and (d) eliminate the candidate
states that are inconsistent with the current view. Any or all of
these processes may have produced the inefficient behavior found
in these studies.

Lack of Proprioceptive Information

The present studies have investigated way-finding behavior
using desktop virtual reality. This technology allows one to gen-
erate environments of arbitrary size and to manipulate and control
the visual information available to the observer. One may question
whether these results will actually generalize to navigation under
more realistic conditions. Specifically, would efficiency be higher
if participants physically navigated through comparable real envi-
ronments? Previous studies by Klatzky, Loomis, Beall, Chance,
and Golledge (1998) showed that participants perform worse with
path integration when information for turning is conveyed only by
visual cues (optic flow) in the absence of vestibular or kinesthetic
cues. Others have shown that when immersive environments are
used, participants have a difficult time making accurate judgments
of distance relative to when they are in a real environment
(Thompson et al., 2004). These results suggest that the lack of
proprioceptive information or the use of virtual environments may
limit the generalization of the present results to natural way-
finding tasks.

We have addressed the issue associated with the lack of propri-
oceptive information in a study to be reported in detail in a later
publication. In brief, we have conducted an experiment in which
we compare efficiencies in three different conditions: keypress
condition (identical to the condition used in the current study),
joystick condition, and immersive condition. The joystick condi-
tion allowed the participant to move through a desktop environ-
ment using a joystick. The joystick movement allowed continuous
movements through the environment rather than the quantized
movements provided by the keypresses. In the immersive condi-
tion we tracked the participant’s movements in a virtual reality
arena. In each of the conditions we measured the participant’s
efficiency for reaching the goal state. In this study, we found no
significant differences between the three conditions. These results
suggest that providing proprioceptive information does not help
improve efficiency in this specific task.

Table 3
Planned, Paired t-Tests for the 4 Participants in Experiment 3

Participant

No map vs. map
Map vs. map � belief

vector

df t p df t p

Sub6 126 
1.881 .062 127 
5.791 �.001
Sub7 127 0.142 .887 127 
6.764 �.001
Sub8 124 
0.769 .443 124 
6.796 �.001
Sub9 125 0.463 .644 127 
5.848 �.001
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The work by Thompson et al. (2004) showing that participants
make inaccurate absolute distance judgments using immersive
virtual reality could still pose a problem. However, the tasks that
participants completed in our studies do not rely on accurate,
absolute judgments. Recall that the layouts were constructed on a
Cartesian grid with standard unit lengths. The only requirement for
distance estimation would be to compute the integer number of
hallway units in the forward-facing view. Moreover, the results of
Experiment 2 imply that difficulty in gathering visual information
at a distance is not a limitation on performance. For these reasons,
we doubt that an underestimate of metric distance judgments in
virtual environments is a cause of human inefficiency in our study.

Spatial Navigation and Low Vision

Although we tested participants who had normal vision, we may
speculate on how these results might apply to low-vision naviga-
tion. People with low vision refers to people who have uncorrect-
able visual impairment that affects their everyday activities. The
present studies investigate human navigation in environments in
which there is very little visual information and, correspondingly,
increased spatial ambiguity. These sparse environments may sim-
ulate some of the characteristics of low-vision navigation in a real
environment. For instance, individuals with low vision may have a
difficult time detecting or identifying specific landmarks within
the environment and therefore, functionally, the environments are
visually sparse with heightened spatial ambiguity. Our results
indicate that participants with normal vision have trouble gener-
ating an accurate belief vector under such circumstances. If this is
the case, one challenge faced by individuals with low vision might
be related to their difficulty in generating an accurate belief vector
within an environment after becoming disoriented. Normally
sighted participants can choose from a rich array of landmarks to
provide important information about their state within the envi-
ronment for reorientation; however, individuals with low vision
have reduced access to these perceptual landmarks. These results
suggest that one of the challenges that someone with low vision
might have is being able to consider multiple places simulta-
neously when they become disoriented within an environment.

Summary and Conclusions

Spatial navigation is a fundamental human cognitive process
that is used hundreds of times each day by most people. From
navigating from home to work to finding one’s way to the mail-
room or even navigating through one’s office to the bookshelf to
reference the most recent issue of the Journal of Experimental
Psychology: Human Perception and Performance, one is using
one’s navigation skills. The present collection of studies investi-
gates a person’s navigating skills when there is uncertainty about
his or her current state in the environment and there is very little
visual information to reduce this ambiguity.

To investigate this issue, we developed an ideal-observer model
of spatial navigation. The tasks for the human and for the model
were comparable. This model provided us with optimal behavior
for each environment and for each task. We used the ideal observer
to compute how efficiently participants were able to accomplish
each

task. By varying the information available to the participant (i.e.,
Experiment 2 manipulated the visual information available) and
making some information explicit rather than implicit (Experiment
3), we were able to narrow down the human inefficiencies in these
tasks to properly updating the set of candidate states (or the
participant’s belief vector) given the prior observations and ac-
tions. We were able to eliminate inefficient perceptual processing,
inefficient memory for the map, and an inefficient decision
process.

In the Discussion section of Experiment 3, we provided four
possible subprocesses that might lead to the inefficient belief
vector updating process. These included accurately generating the
candidate states given an observation, accurately remembering the
belief vector, accurately updating a belief vector given an action,
and accurately eliminating candidate states given the current ob-
servation. Future research will investigate the contributions that
these four subprocesses have on a person’s navigating behavior
when navigating with uncertainty.
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Appendix

Illustration of the Ideal Navigator Algorithm

Table 1 illustrates how the model computes the cost for the next move
in the situation illustrated in Figure 1. However, Table 1 does not provide
an illustration for how those calculations were generated. Table A1 illus-
trates the actions, the expected observations at each step, and the current
belief at each step when assuming the initial state is D-North and starting
with the action rotate-left. A similar analysis would have to be done for all
of the other actions (rotate-right, forward) and all of the other possible
states. As shown in Table A1 in addition to Table 1, the model has to
consider both the condition when its assumption is correct (i.e., the initial
state is actually D-North) and when this assumption is incorrect (i.e., the
initial state is actually E-South).

The second column in Table A1 illustrates the shortest route assuming
that the initial state is D-North and this assumption is correct.A1 The first
line of this column (Action 1) illustrates the assumed initial action. Re-
member, the model computes the expected cost for starting with each
available action. The first action is rotate-left. Column 4 illustrates the new
state that the observer would be in if the model’s initial state was actually
D-North. The resulting state assuming that the initial state is D-North and
the observer turned left is D-West. Column 5 illustrates the resulting state
assuming the initial state is E-South. Column 6 illustrates the expected
observation at the resulting state assuming the initial state is D-North, and
column 7 shows the expected observation at the resulting state if the initial
state is E-South. Notice that after the initial action, the expected observa-
tion is the same. Column 8 illustrates the model’s current belief assuming
that the initial state is D-North, and column 9 illustrates the model’s belief
vector if the initial state is E-South.

There are a number of important aspects of the model that are clearly
illustrated in Table A1. The first point to note is that the model is able
to reach the goal in five actions if the true state is D-North and the first
action is a rotate-left action. The second aspect to note is that actions in

Column 3 are the same (true state is E-South) for the first four actions.
Remember, this table is computing the cost assuming that the initial state is
D-North. After the fourth action, the model expects to receive a different
observation depending on whether the true state is D-North or E-South. This
is illustrated in Columns 6 and 7 of the table. More specifically, the expected
observation when the model reaches B-East is different from the expected
observation at H-West. Also note that in columns 8 and 9 the model’s current
belief also diverges at this point. If the model observes a single corridor
dead-end (C-W), the model will know that it is at B-E and the initial state was
D-North. But if the model observes two consecutive corridors and then a wall
(C-C-W), then the model knows that its initial state was really E-South and its
current state is H-West.

Row 5 (Action 5) is the point at which these two cases diverge. If the
true state was actually D-North, then the optimal action is to move forward
and reach the goal at C-East. However, if the model was actually at
E-South, the model now has to “recover” from this incorrect assumption by
turning around and moving toward the goal. Remember, Table A1 illus-
trates the routes when the model assumes that it is at D-North and the first
action is rotate-left. The model will compute a similar table for all of the
possible states, including E-South and all of the initial actions. The sum-
mary of each of these computations can be found in Table 1.

A1 It may still be unclear how these specific actions were generated. As
mentioned before, the model does a breadth-first search through the state-
transition matrix until it finds a route that reaches the goal with no
remaining uncertainty starting with a specific action.
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Table A1
An Illustration of the Actions and Observations Used to Compute the Estimates in Table 1 When
the Model Assumes That It Is Starting at D-North and Starts With a Rotate-Left Action

Action
no.

Action Resulting state Observation Belief state

D-North E-South D-North E-South D-North E-South D-North E-South

1 Left Left D-West E-East Wall Wall D-W, E-E D-W, E-E
2 Right Right D-North E-South C-LRW C-LRW (T-junction) D-N, E-S D-N, E-S
3 Forward Forward B-North H-South Wall Wall B-N, H-S B-N, H-S
4 Right Right B-East H-West C-W C-C-Wall B-E H-W
5 Forward Right C-East H-North Wall C-C-C-LRW C-E H-N
6 Done Forward E-North C-C-LRW C-E E-N
7 Forward D-North C-LRW D-N
8 Forward B-North Wall B-N
9 Right B-East C B-E
10 Forward C-East Wall C-E
11 Done C-East Wall C-E

Total 5 10

Note. The first column on the left illustrates the action number. The second column illustrates the actions made
when this assumption is correct (D-North columns), and the third column illustrates when this assumption is
incorrect (i.e., observer is actually at E-South). The estimates of the number of actions (5 and 10) correspond to
the expected cost when this assumption is correct (initial state really is D-North) and when it is not correct (initial
state was actually E-South). A similar computation would be computed starting with a right turn and a forward
action. In addition, the same computation is carried out assuming that the observer is at E-South. The
observations can be a corridor (C) and the intersections on the left (L) and the intersections on the right (R) or
a wall (W).
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